From Inflation to Galaxies Formation in the Braneword Scenario Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, Hugo Compean, F. Siddhartha.

Slides:



Advertisements
Similar presentations
Dark Matter, Dark Energy, and the Current State of Cosmology
Advertisements

Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
1 1 Dissecting Dark Energy Eric Linder Lawrence Berkeley National Laboratory.
Bose-Einstein Condesates as Galactic Dark Matter Halos Tonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal.
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
Particle Astrophysics & Cosmology SS Chapter 7 Dark Matter.
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
José Beltrán and A. L. Maroto Dpto. Física teórica I, Universidad Complutense de Madrid XXXI Reunión Bienal de Física Granada, 11 de Septiembre de 2007.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
Particle Astrophysics & Cosmology SS Chapter 8 Structure Formation.
Prof. Eric Gawiser Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation.
Cosmological N-body simulations of structure formation Jürg Diemand, Ben Moore and Joachim Stadel, University of Zurich.
Particle Physics and Cosmology Inflation.
Particle Physics and Cosmology cosmological neutrino abundance.
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
Galaxy Formation Models Cold Dark Matter is the dominant component of galaxies and is key to their formation and evolution. CDM models have been wonderful.
Cosmological structure formation: models confront observations Andrea V. Maccio’ Max Planck Institute for Astronomy Heidelberg A. Boyarsky (EPFL),A. Dutton.
Non-minimal inflation and SUSY GUTs Nobuchika Okada University of Alabama International Workshop on Grand Unification Yukawa Institute of Theoretical Physics.
Higgs inflation in minimal supersymmetric SU(5) GUT Nobuchika Okada University of Alabama, Tuscaloosa, AL In collaboration with Masato Arai & Shinsuke.
The Theory/Observation connection lecture 3 the (non-linear) growth of structure Will Percival The University of Portsmouth.
Effects of baryons on the structure of massive galaxies and clusters Oleg Gnedin University of Michigan Collisionless N-body simulations predict a nearly.
Observational Evidence for Extra Dimensions from Dark Matter Bo Qin National Astronomical Observatories, China Bo Qin, Ue-Li Pen & Joseph Silk, PRL, submitted.
Flat large extra dimensions: implications for Dark matter direct detection Bo Qin ( 秦波 ) National Astronomical Observatories, CAS (中国科学院国家天文台) with Glenn.
Relic Neutrinos as a Source of Dark Energy Neal Weiner New York University IDM04 R.Fardon, D.B.Kaplan, A.E.Nelson, NW What does dark energy have to do.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Dark Matter direct and indirect detection
Dark Matter and Dark Energy from the solution of the strong CP problem Roberto Mainini, L. Colombo & S.A. Bonometto Universita’ di Milano Bicocca Mainini.
Universe without Expansion. NATURE | NEWS Cosmologist claims Universe may not be expanding Particles' changing masses could explain why distant galaxies.
Dilaton quantum gravity and cosmology. Dilaton quantum gravity Functional renormalization flow, with truncation :
Dilaton quantum gravity and cosmology. Dilaton quantum gravity Functional renormalization flow, with truncation :
Primordial black hole formation in an axion-like curvaton model Primordial black hole formation in an axion-like curvaton model 北嶋直弥 東京大学 / 宇宙線研究所 M. Kawasaki,
The dark universe SFB – Transregio Bonn – Munich - Heidelberg.
Big bang or freeze ?. conclusions Big bang singularity is artefact Big bang singularity is artefact of inappropriate choice of field variables – of inappropriate.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
Gamma rays annihilated from substructures of the Milky Way and Quintessino dark matter Bi Xiao-Jun Institute of High Energy Physics, Chinese Academy of.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS Constraints on the cross-section of dark matter annihilation from Fermi observation of M31 Zhengwei Li Payload.
Neutrino Models of Dark Energy LEOFEST Ringberg Castle April 25, 2005 R. D. Peccei UCLA.
Universe without Expansion. The Universe is shrinking.
Hypothesis Scalar Field is the Dark Matter and the Dark Energy in the Cosmos, i.e. about 95% of the matter of the Universe. Scalar Field is the Dark Matter.
ERE 2008September 15-19, Spanish Relativity Meeting 2008, Salamanca, September (2008) Avoiding the DARK ENERGY coincidence problem with a COSMIC.
Anisotropies in the gamma-ray sky Fiorenza Donato Torino University & INFN, Italy Workshop on High-Energy Messengers: connecting the non-thermal Extragalctic.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Cosmology and Dark Matter IV: Problems with our current picture Jerry Sellwood.
Holographic Dark Energy and Anthropic Principle Qing-Guo Huang Interdisciplinary Center of Theoretical Studies CAS
MOND and baryonic dark matter Benoit Famaey (Brussels, ULB)
WMAP Cosmology Courtesy of NASA/WMAP Science Team map.gsfc.nasa.gov.
Oscillatons as Galactic Dark Matter Halos Tonatiuh Matos
Dark matter Phase Transition constrained at Ec = O(0.1) eV by LSB rotation curve Jorge Hiram Mastache de los Santos Dr. Axel de la Macorra Pettersson UNIVERSIDAD.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
Dark Energy vs. Dark Matter Towards a unification… Centre de Recherche Astronomique de Lyon Alexandre ARBEY March 5, 2006.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
Determination of cosmological parameters Gong-Bo Zhao, Jun-Qing Xia, Bo Feng, Hong Li Xinmin Zhang IHEP, Beijing
Sam Young University of Sussex arXiv: , SY, Christian Byrnes Texas Symposium, 16 th December 2015 CONDITIONS FOR THE FORMATION OF PRIMORDIAL BLACK.
Studies of Systematics for Dark Matter Observations John Carr 1.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
An interesting candidate?
Generating Neutrino Mass & Electroweak Scale Radiatively
The Scalar Field Dark Matter Model Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, F. Siddhartha Guzman, Dario Nuñez, Luis Ureña,
Topics in Higgs Portal Dark Matter
Galaxy formation from the IIB Superstring with Fluxes Tonatiuh Matos
Probing the Dark Sector
Cosmology, Dark Matter and Galaxy Formation from Strings Theory Tonatiuh Matos
Tonatiuh Matos fis. cinvestav. mx/~tmatos/ iac
Gamma-ray emission from warm WIMP annihilation
Bose-Einstein Condensates as Galactic Dark Matter Halos Tonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal.
The Scalar Field Dark Matter Model Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, F. Siddhartha Guzman, Dario Nuñez, Luis Ureña,
Presentation transcript:

From Inflation to Galaxies Formation in the Braneword Scenario Tonatiuh Matos, Miguel Alcubierre, Ruben Cordero, Ricardo Becerril, Hugo Compean, F. Siddhartha Guzman, Dario Nuñez, Luis Ureña, Argelia Bernal, A Superstrings Model  Braneword  Inflation  DM SnIa Mass Power Spectrum Angular Power Spectrum Galaxies Formation

The Model T. Matos, H. Compean, R. Cordero, in preparation. Braneword Scenario: The radion must be stabilized Superstrings  V  f 1 exp(  ) + f 2 exp(-  ) + … V = V 0 [cosh(  ) – 1]  exp(  ) H 2 = 8  /(3M pl 2 )  (1 +  / b )  Inflation  graceful exit  BBN  Cosmology  Fix the free constants.

The Cosmology T. Matos and L. Ureña, Class. Q. Grav. 17(2000)L75 Dark Matter:  V 0 [cosh(  ) –1] Dark Energy:   Baryons, Neutrinos, etc.    0.25    0.7  b  0.05

Scalar Field Fluctuations T. Matos and L. Ureña, Phys. Rev. D63(2001)063506

Results:

Natural Cut-off

Summarizing SFDM model is insensitive to initial conditions Behaves as CDM Reproduces all the successes  CDM above galactic scales. Predicts a sharp cut-off in the mass power spectrum The favored values for the two free parameters  20 V 0  (3  M pl ) 4  m   eV

Numerical Simulations Miguel Alcubierre, F. Siddhartha Guzman, Tonatiuh Matos, Dario Nuñez, Luis A. Ureña and Petra Wiederhold. Class. Quant. Grav 19(2002)5017.

Oscillatons

Scalar Field Fluctuation=Halo Tonatiuh Matos and F. Siddhartha Guzman Class. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R);

The Newtonian Force

WIMPs Density profile in Galaxies  (r)  r  as r  0 Numerical Simulations   -1.5  NFW (r)  1/r 1/(r+b) 2 Observations   Number of Dwarf Galaxies >>

Dwarf Galaxies

The Critical Mass Tonatiuh Matos and F. Siddhartha Guzman, Class.Q. Grav. 18(2001)5055 M  0.1 M 2 Planck /m  If m m  eV M  Mo

Perfil de densidad

Galaxy Formation at z=7

Metalicity in z=2

Scalar Field DM Cross Section Tonatiuh Matos and Luis A. Ureña, Phys. Lett. B538 (2002)246. cosh is renormalizable SFDM   2  2 / m  = 8  2 exp(I 2 )/[64  (m  ) 3 ] Reparametrizations factor  = exp[ 2  o  2 /(32  2 )] Internal Contraction I  1/(16  2 ) If   2 M Pl  2  2 / m  = cm 2 /GeV

The Inflaton as SFDM James Lidsey, Tonatiuh Matos and Luis A. Ureña, Phys.Rev.,D66(2002) Braneworld scenario: H 2 = 8  /(3M pl 2 )  (1 +  / b ) b  2.88  GeV 4 V  V 0 exp(  (8  )/ M pl )  i  1.94 M pl V i  1.63  GeV 4  end  1.90 M pl V end  2.33  GeV 4 M pbh  10 9 M pl t evap  s  0   Einst < 1.80 M pl  Einst. << b  pbh > 1.06 M pl  exp > 0.01 M pl

Conclusion The scalar field is a good candidate to be the Dark Matter of the Universe