H CC 9.5 Acidity of Acetylene and Terminal Alkynes.

Slides:



Advertisements
Similar presentations
Ch 7- Alkenes and Alkynes I. Division of Material Alkenes and Alkynes are very versatile molecules in Organic Chemistry As a result, there is a lot of.
Advertisements

The (E)-(Z) System for Designating Alkene Diastereomers
ALKYNES Sem 1: 2011/2012 Khadijah Hanim bt Abdul Rahman
Alkynes: An Introduction to Organic Synthesis Based on McMurry’s Organic Chemistry, 7 th edition, Chapter 8.
Chapter 9 Alkynes: An Introduction to Organic Synthesis
© Prentice Hall 2001Chapter 51 Hydrogen Halide Addition The addition of a hydrogen halide to an alkyne follows Markovnikov’s rule because a secondary vinylic.
7-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson.
21.6 The Acetoacetic Ester Synthesis. Acetoacetic Ester Acetoacetic ester is another name for ethyl acetoacetate. The "acetoacetic ester synthesis" uses.
205 Chapter 9: Alkynes 9.1: Sources of Alkynes (please read) 9.2: Nomenclature Systematic Nomenclature: Prefix-Parent-Suffix Naming Alkynes: Suffix: -yne.
Organic Chemistry William H. Brown & Christopher S. Foote.
Alkynes Alkynes contain a carbon—carbon triple bond. Terminal alkynes have the triple bond at the end of the carbon chain so that a hydrogen atom is directly.
ACETYLIDE IONS AND ALKYLATION REACTIONS (REVIEW) SYNTHESIS Dr. Clower CHEM 2412 Fall 2014 McMurry (8 th ed.) sections , 8.1, 9.2, 9.9.
1 Alkynes contain a carbon-carbon triple bond. An alkyne has the general molecular formula C n H 2n−2, giving it four fewer hydrogens than the maximum.
Alkynes C 17.
Alkynes  Nomenclature  Physical Properties  Synthesis  Reactions.
Alkynes  Hydrocarbons that have at least one triple bond between two adjacent carbons  Contain the general formula of C n H 2n-2  Contains carbon atoms.
Physical and Chemical Properties and Reactions of Alkenes and Alkynes CHAPTER NINE TERRENCE P. SHERLOCK BURLINGTON COUNTY COLLEGE 2004 CHE-240 Unit 3.
Chapter 51 Reactions of Alkenes and Alkynes. Chapter 5.
Alkynes.
Alkynes. C n H 2n-2 C 2 H 2 H:C:::C:H H—C  C—H sp => linear, 180 o acetylene ethyne C 3 H 4 CH 3 C  CH methylacetylene propyne.
Alkynes. Hydrocarbons with a carbon–carbon triple bond are alkynes. Noncyclic alkynes have the molecular formula C n H 2n-2. Acetylene (HC≡ CH) is the.
Dr Manal F. AbouTaleb Alkynes .1 Introduction
CH 8 Alkynes: An Introduction to Organic Synthesis
ORGANIC CHEMISTRY 171 Section 201. Alkynes Hydrocarbons that contain carbon-carbon triple bonds Acetylene is the simplest alkyne. Our study of alkynes.
Chapter 8: Alkynes Alkynes: An Introduction to Organic Synthesis.
Alkynes C 17.
© 2011 Pearson Education, Inc. 1 Organic Chemistry 6 th Edition Paula Yurkanis Bruice Chapter 6 The Reactions of Alkynes An Introduction to Multistep.
Chapter 14 Organometallic Compounds Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Dr. Wolf's CHM 201 & Chapter 14 Organometallic Compounds.
Chapter 9 Alkynes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1.
Organic Chemistry, 8th Edition L. G. Wade, Jr.
Alkynes. Alkynes are molecules that incorporate a C  C triple bond.
ALKENE AND ALKYNE REACTIONS, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , , , 8.10, 8.12,
8.13 Substitution and Elimination as Competing Reactions.
Dr. Wolf's CHM 201 & Chapter 9 Alkynes. Dr. Wolf's CHM 201 & Sources of Alkynes.
Unsaturated Hydrocarbons
ALKYNES - Chapter 7 nomenclature - (chapt 5), structure, classification acidity of terminal acetylenes - (chapt 4) alkylation prep - dehydrohalogenation.
IV. Oxidation Three types A. Epoxidation B. Hydroxylation C. Oxidative cleavage.
Puan Rozaini Abdullah School of Bioprocess Engineering.
Rozaini Abdullah School of Bioprocess Engineering UniMAP Week 5.
54c) Fill in the blanks f) j)
Chapter 9 Alkynes Dr. Wolf's CHM 201 &
Chapter 4-3: Continue Alkynes: An Introduction to Organic Synthesis
Unsaturated Hydrocarbons II: Alkynes
20.18 Preparation of Nitriles. nucleophilic substitution by cyanide on alkyl halides (Sections 8.1 and 8.13) cyanohydrin formation (Section 17.7) dehydration.
CCAlkynes. Synthesis of Acetylene Heat coke with lime in an electric furnace to form calcium carbide. Then drip water on the calcium carbide. coke lime.
CCAlkynes. Synthesis of Acetylene Heating coke with lime in an electric furnace to forms calcium carbide. Then drip water on the calcium carbide. coke.
categories of organic reactions There are so many types of organic reactions. We’re going to focus on just a few. There are so many types of organic reactions.
Chapter 9 Alkynes: An Introduction to Organic Synthesis
CHAPTER 4: ALKYNES.
Physical and Chemical Properties and Reactions of Alkenes and Alkynes.
Alkynes Introduction—Structure and Bonding
Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides.
Alkynes Alkynes Nomenclature Synthesis Reactions.
5.8 Preparation of Alkenes: Elimination Reactions
Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides.
Chapter 9 Alkynes: An Introduction to Organic Synthesis
Unsaturated Hydrocarbons
Alkynes Unit 8.
Alkynes Unit 9.
Organic chemistry sh.javanshir
Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides.
Unsaturated Hydrocarbons II: Dienes and Alkynes
Unsaturated Hydrocarbons II: Dienes and Alkynes
Unsaturated Hydrocarbons II: Alkynes
Alkynes.
Chapter 9 Alkynes Sources of Alkynes and Nomenclature
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Organic Chemistry CHEM 145
Presentation transcript:

H CC 9.5 Acidity of Acetylene and Terminal Alkynes

In general, hydrocarbons are exceedingly weak acids CompoundpK a HF3.2 H 2 O16 NH CH 4 60 H2CH2CH2CH2C CH 2 Acidity of Hydrocarbons

Acetylene is a weak acid, but not nearly as weak as alkanes or alkenes. CompoundpK a HF3.2 H 2 O16 NH CH 4 60 H2CH2CH2CH2C CH 2 HCCH 26 Acetylene

C H H sp 3 C : sp 2 spHC C C CHC C CC : : Electrons in an orbital with more s character are closer to the nucleus and more strongly held. Carbon: Hybridization and Electronegativity

Objective: Prepare a solution containing sodium acetylide Will treatment of acetylene with NaOH be effective? NaCCH H2OH2OH2OH2O NaOH + HC CH NaC CH+ Sodium Acetylide

No. Hydroxide is not a strong enough base to deprotonate acetylene. H2OH2OH2OH2O NaOH + HC CH NaC CH+– HO.... : H CCH HO H CCH: – weaker acid pK a = 26 stronger acid pK a = 16 In acid-base reactions, the equilibrium lies to the side of the weaker acid. Sodium Acetylide

Solution: Use a stronger base. Sodium amide is a stronger base than sodium hydroxide. NH 3 NaNH 2 + HC CH NaC CH+– H2NH2NH2NH2N.. : H CCHH CCH: – stronger acid pK a = 26 weaker acid pK a = 36 Ammonia is a weaker acid than acetylene. The position of equilibrium lies to the right. H2NH2NH2NH2N Sodium Acetylide

9.6 Preparation of Alkynes by Alkylation of Acetylene and Terminal Alkynes

Carbon-carbon bond formation alkylation of acetylene and terminal alkynes Functional-group transformations elimination There are two main methods for the preparation of alkynes: Preparation of Alkynes

H—C C—H R—C C—H C—R Alkylation of Acetylene and Terminal Alkynes

RX SN2SN2SN2SN2 X–X–X–X–:+ C–: H—C C—RH—C+ The alkylating agent is an alkyl halide, and the reaction is nucleophilic substitution. The nucleophile is sodium acetylide or the sodium salt of a terminal (monosubstituted) alkyne. Alkylation of Acetylene and Terminal Alkynes

NaNH 2 NH 3 CH 3 CH 2 CH 2 CH 2 Br (70-77%)HCCH HC CNa HC C CH 2 CH 2 CH 2 CH 3 Example: Alkylation of Acetylene

NaNH 2, NH 3 CH 3 Br CHCHCHCH (CH 3 ) 2 CHCH 2 C CNa (CH 3 ) 2 CHCH 2 C (81%) C—CH 3 (CH 3 ) 2 CHCH 2 C Example: Alkylation of a Terminal Alkyne

1. NaNH 2, NH 3 2. CH 3 CH 2 Br (81%)H—CC—H 1. NaNH 2, NH 3 2. CH 3 Br C—H CH 3 CH 2 —C C—CH 3 CH 3 CH 2 —C Example: Dialkylation of Acetylene

Effective only with primary alkyl halides Secondary and tertiary alkyl halides undergo elimination Limitation

E2 predominates over S N 2 when alkyl halide is secondary or tertiary E2 C–: H—C + C H—C —H—H—H—H C C X–X–X–X– : + Acetylide Ion as a Base H C C X

9.7 Preparation of Alkynes by Elimination Reactions

Geminal dihalide Vicinal dihalide X C CXHH XX CCHH The most frequent applications are in preparation of terminal alkynes. Preparation of Alkynes by "Double Dehydrohalogenation"

(CH 3 ) 3 CCH 2 —CHCl NaNH 2, NH 3 2. H 2 O (56-60%) (CH 3 ) 3 CC CH Geminal dihalide  Alkyne

NaNH 2, NH 3 H2OH2OH2OH2O (CH 3 ) 3 CCH 2 —CHCl 2 (CH 3 ) 3 CCH CHCl (CH 3 ) 3 CC CH CNa(slow) (slow) (fast) Geminal dihalide  Alkyne

CH 3 (CH 2 ) 7 CH—CH 2 Br Br 1. 3NaNH 2, NH 3 2. H 2 O (54%) CH 3 (CH 2 ) 7 C CH Vicinal dihalide  Alkyne