 Excretion refers to the removal of solutes and water from the body in urine  Reabsorption (movement from tubular fluid to peritubular blood) and, 

Slides:



Advertisements
Similar presentations
Kidney and renal dialysis
Advertisements

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Excretion The removal of organic waste products from body fluids Elimination.
Early Filtrate Processing-
The Physiology of the Proximal Tubule. Structure of the Proximal Tubule The proximal tubule receives the ultrafiltrate from the glomerulus. The proximal.
Renal Transport Mechanisms
Kidney Transport Reabsorption of filtered water and solutes from the tubular lumen across the tubular epithelial cells, through the renal interstitium,
The Kidney.
The nephron and kidney function
EXCRETORY SYSTEM  Water balance on land or in salt water or fresh water are very different, but their solutions all depend on the regulations of solute.
The Physiology of the Loop of Henle. Structure The loop composes the pars recta of the proximal tubule (thick descending limb), the thin descending and.
Urinary System Spring 2010.
Functions of the kidney
Renal Structure and Function. Introduction Main function of kidney is excretion of waste products (urea, uric acid, creatinine, etc). Other excretory.
Transported substances move through membranes
Excretory System!.
Renal (Urinary) System
KIDNEY FUNCTIONS URINE FORMATION
Reabsorption and Secretion. Learning Objectives Understand how fluid flow from the tubular lumen to the peritubular capillaries. Know how the reabsorption.
Topic 11: Human Health and Physiology
Cross PHYSIOLOGY 451 RENAL PHYSIOLOGY Dr. Michael Fill, Lecturer velcro.
Lecture 4 Dr. Zahoor 1. We will discuss Reabsorption of - Glucose - Amino acid - Chloride - Urea - Potassium - Phosphate - Calcium - Magnesium (We have.
Formation of Urine.
Unit O: Urinary System.
4/7/08 Urinary System Chapter 24 – Day 2. 4/7/08 Review Nephron Structure  Network with blood vessels  Two types of nephrons ♦Cortical Nephrons – loop.
NEPHROLOGY: THE MAKING OF URINE
BLOCK: URIN 313 PHYSIOLOGY OF THE URINARY SYSTEM LECTURE 3 1 Dr. Amel Eassawi.
Lecture 4 RENAL HANDLING OF SODIUM, CHLORIDE AND WATER
Renal tubular reabsorption/Secretion. Urine Formation Preview.
Tubular reabsorption is a highly selective process
Anatomy and Physiology
Chapter 13 - Excretory System
Controlling the Internal Environment Chapter 40. The Big Picture The excretory system is a regulatory system that helps to maintain homeostasis within.
Urinary System. Urinary System Function The function of the urinary system is to help maintain the appropriate balance of water and solutes in the bodies.
The kidney cont… WALT To recap the structure and function of the kidney To understand the processes of selective reabsorption and where this occurs The.
Renal Physiology 1 Dr Derek Scott
The Physiology of the Distal Tubules and Collecting Ducts.
Tubular reabsorption and tubular secretion
FORMATION OF URINE The formation of urine occurs in three separate steps.
Physiology of the Urinary System
Urine Formation Variation Dr. Wasif Haq. Osmolarity Osmolarity: Measure of solute concentration. Total concentration of solutes in extracellular fluid.
Excretion and the Kidney HL (Paper 1 and 2). Excretion What is excretion? – Elimination of waste from the metabolic processes, to maintain homeostasis.
Reabsorption In the Kidney. Objectives 1)Describe the general structure of the kidney, the nephron, and associated blood vessels 2)Explain the functioning.
(Renal Physiology 5) Renal Transport Process Ahmad Ahmeda Cell phone:
Urinary System Chapter 25. Overview 1.Structures/Organs 2. Location (Kidneys) – T 12 to L 3 – 150 g.
TUBULAR REABSORPTION & SECRETION Dr. Eman El Eter.
Kidney 1. Functions: removal of metabolic waste products regulation of the water content of body fluids regulation of pH of body fluids regulation of chemical.
Urinary System.
RENAL SYSTEM PHYSIOLOGY
Tubular reabsorption.
SOLUTE TRANSPORT MECHANISMS, TUBULAR REABSORPTION AND SECRETION WITH TRANSPORT MAXIMUM SYSTEM Dr. Shafali Singh.
URINE FORMATION IN THE NEPHRON 9.2. Formation of Urine 3 main steps: -Filtration, -Reabsorption, - Secretion 1. Filtration Dissolved solutes pass through.
PROF. EMAN EL ETER Diluting and concentrating mechanisms of the kidney.
3/10/2016concentration&dilution of urine1. Renal mechanisms of diluting and concentrating urine  The kidneys excrete excess water by forming dilute urine.
Dr. imrana ehsan. What do the kidneys do? The glomeruli “non-discriminantly” filter the blood, and the tubules take back what the body needs leaving.
Regulation of Acid- base Balance
Course Teacher: Imon Rahman
Tubular Reabsorption and regulation of tubular reabsorption Tortora Ebaa M Alzayadneh, PhD.
Tubular reabsorption.
Countercurrent Mechanism
Reabsorption & secretion Part - I
11.3 The Kidney and Excretion Excretion. The Kidney
TUBULAR REABSORPTION Part II
The Urinary System: Part B
Reabsorption and the Nephron 3/21 and 3/26
Tubular processing of the glomerular filtrate. The renal tubules process the glomerular filtrate by: Reabsorption: Transport of a substance from the tubular.
  The Body Fluids and Kidneys Lecture 16 KEEP OFF YOUR MOBILE PHONES
Urine Formation.
Urinary System 9-15.
Reabsorption and the Nephron 4/1
FORMATION OF DILUTE URINE & COUNTER CURRENT MECHANISM
Presentation transcript:

 Excretion refers to the removal of solutes and water from the body in urine  Reabsorption (movement from tubular fluid to peritubular blood) and,  S ecretion (movement from peritubular blood to tubular fluid) refer to direction of movement of solutes and water across the renal tubular epithelium

 The luminal cell membranes are those that face the tubular lumen (“urine” side)  The basolateral cell membranes are those are in contact with the lateral intercellular spaces and peritubular interstitium (“blood” side)

4

5

6

 Solute reaborption in the proximal tubule is isosmotic (water follows solute osmotically and tubular fluid osmolality remains similar to that of plasma).  65%-70% of water and sodium reabsorption occurs in the proximal tubule  90% of bicarbonate, calcium, K+  100% of glucose & amino acids  Proximal tubules: coarse adjustment  Distal tubules: fine adjustment (hormonal control).

 Responsible for producing a concentrated urine by forming a concentration gradient within the medulla of kidney.  When ADH is present, water is reabsorbed and urine is concentrated.  Counter-current multiplier 8

Loop of Henle: Acts in manner of counter current exchanger. Note that each limb of loop has fluid moving in opposite directions (even though connected at one end). Further concentrates urine. Also means that salt concentration will be highest near bend in the loop.

10

Absorption through loop of Henle: Descending limb: is water permeable and allow absorption of 25% of filtered H2O. It is impermeable to Na-CL. Thin ascending limb: is impermeable to H2O, but permeable to Na-Cl, where they are absorbed passively in this part. Thick ascending limb: is impermeable to H2O. Na-K-2Cl co-transport occur in this part.

 What happens here depends on hormonal control:  Aldosterone affects Na+ and K+  ADH – facultative water reabsorption  Parathyroid hormone – increases Ca++ reabsorption 12

 Tubular secretion to rid body of substances: K+, H+, urea, ammonia, creatinine and certain drugs  Secretion of H+ helps maintain blood pH (can also reabsorb bicarb and generate new bicarb) 13

14

 Na + absorbed by active transport mechanisms, NOT by T M mechanism. Basolateral ATPases establish a gradient across the tubule wall.  Proximal tubule is very permeable to Na +, so ions flow down gradient, across membranes.  Microvilli create large surface area for absorption.  Electrical gradient created also draws Cl - across.  H 2 O follows Na + due to osmotic force.  Means fluid left in tubule is concentrated.

 Glucose absorption also relies upon the Na + gradient.  Most reabsorbed in proximal tubule.  At apical membrane, needs Na + /glucose cotransporter (SGLT)  Crosses basolateral membrane via glucose transporters (GLUT’s), which do not rely upon Na +.

 K + is major cation in cells and balance is essential for life.  Small change from 4 to 5.5 mmoles/l = hyperkalaemia = ventric. fibrillation = death.  Reabsorb K + at proximal tubule.  Changes in K + excretion due to changes in K + secretion in distal tubule

 K + reabsorption along the proximal tubule is largely passive and follows the movement of Na + and fluid (in collecting tubules, may also rely active transport).  K + secretion occurs in cortical collecting tubule (principal cells), and relies upon active transport of K + across basolateral membrane and passive exit across apical membrane into tubular fluid.

 Countercurrent is that, fluid flows down the descending limb and up the ascending limb.  The critical characteristics of the loops which make them countercurrent multipliers are:  1. The ascending limb of the loop of Henle actively co-transports Na + and Cl - ions out of the tubule lumen into the interstitium. The ascending limb is impermeable to H 2 O.  2. The descending limb is freely permeable to H 2 O but relatively impermeable to NaCl. H 2 O that moves out of tubule into intersitium is removed the blood vessels called vasa recta – thus gradients maintained and H 2 O returned to circulation.

Mechanisms of tubular transport: Active transport: i.Primary active transport: e.g. Na-K-pump, H+-pump ii.Secondary active transport : e.g. Na-K-2Cl co- transport, glucose-sodium co-transport, amino acid-sodium co-transport. Passive transport: i.Simple diffusion. ii.Facilitated diffusion. Osmosis. Pinocytosis. Solvent drag.

 Movement of a substance across a membrane as a result of random molecular motion down concentration and electrochemical gradient. No energy needed.  E.g. bicarbonate, chloride,

 Movement of a substance across a membrane down its electrochemical gradient after binding with a specific carrier protein in the membrane.  Needs a carrier.

 Glucose, amino acids: At Basolateral membranes of proximal tubules  Sodium: luminal membranes of proximal tubules

 Movement of a substance across a membrane in combination with a carrier protein but against an electrochemical gradient

 Directly requires metabolic energy (i.e. hydrolysis of ATP)  Saturable (has a V max )  Structural specificity and affinity of the carrier for the substance transported

 Na + -K + ATPase  H + ATPase  H + -K + ATPase  Ca +2 ATPase

 In renal tubular cells found only in basolateral membrane  When ATP is hydrolyzed, 2 K + ions are pumped into the cell and 3 Na + ions are pumped out  Maintains favorable electrochemical gradient for Na + entry at luminal membrane  Maintains cell membrane potential difference and intracellular osmolality

Proximal: the Na-K pump on the apical (interstitial side) membrane is the driving force for the electrochemical gradient which drives passive transport into the cell and keeps intracellular Na low, pumping against the gradient into the basal-lateral space. Passive entry into the cell is by diffusion, facillitated diffusion through a transporter or co-transporter, and by electroneutral “exchange” with hydrogen ions (H+). Na + pump Tubular lumen Interstitial space

 Two substances interact with one specific carrier in the cell membrane and both substances are translocated across the membrane  Co-transport Transported substances move in the same direction across the membrane  Counter-transport Transported substances move in opposite directions across the membrane

Paracellular = 50% Transcellular K+ 50%

LUMINAL BASOLATERAL Glucose, P i amino acids Na + H+H+H+H+ 3 Na + 2 K + K+K+K+K+ HCO H 2 CO 3

 “Uphill” transport of one substance is linked to “downhill” transport of another substance  Carrier must be occupied by both substances (or be unoccupied) to be mobile in the membrane  Saturable (has a V max )

 Glucose, amino acids, or phosphate with sodium in luminal membranes of proximal tubules  Sodium and hydrogen ions in luminal membranes of proximal tubules.  Na-K-2CL transport in the thick ascending limb of Henle

 Urea is passively reabsorbed in the proximal tubule

Water Reabsorption: In the proximal tubule, water follows sodium passibvely and isosmotically because the proximal tubule is very permeable to water. Water moves both transcellularly and paracellularly. The transcellular movement is facillitated by “aquaporin” water channels in both the apical and basalateral membranes.

What do the kidneys do? The glomeruli “non-discriminantly” filter the blood, and the tubules take back what the body needs leaving the rest as waste to be excreted. Some wastes also can be actively added to the tubular fluid. Thick ascending : Na-K- 2Cl co-transport Descending limb: 25% H2O2 absorption