Charge Long-range magnetic order Implemented by Coupling Xavier Marti, 1.Metals:

Slides:



Advertisements
Similar presentations
Plzeň, Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. Magnetický polovodič (Ga,Mn)As: technologie,
Advertisements

Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Karel Výborný, Jan Zemen, Kamil Olejník, Petr Vašek, Miroslav Cukr, Vít Novák, Andrew Rushforth, R.P.Campion, C.T. Foxon, B.L. Gallagher, Tomáš Jungwirth.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Making semiconductors magnetic: new materials properties, devices, and future JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge.
Making semiconductors magnetic: new materials properties, devices, and future NRI SWAN JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi.
Tomas Jungwirth, Jan Mašek, Alexander Shick Karel Výborný, Jan Zemen, Vít Novák, et al. Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew.
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
Jairo Sinova Texas A &M University References: Jungwirth, Sinova et al, arXive: , and Jungwirth et al, Theory of ferromagnetic (III,Mn)V semiconductors,
School of Physics and Astronomy, University of Nottingham, UK
Vancouver 081 Free carrier induced substrate heating of the epitaxially grown GaMnAs Institute of Physics AS CR, Prague Vit Novak, Kamil Olejnik, Miroslav.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Study on the Diluted Magnetic Semiconductors QSRC, Dongguk University
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Institute of Physics ASCR
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.
MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington Andrew Preston Wellington, New.
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
Regensburg, Curie point singularity in GaMnAs Institute of Physics of the Academy of Sciences of the Czech Republic Division of Solid State Physics.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Magneto-transport anisotropy phenomena in GaMnAs and beyond Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Kevin Edmonds, Andrew.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
MacDiarmid Institute for Advanced Materials and NanotechnologyVictoria University of Wellington Andrew Preston Wellington, New.
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
How many types of crystal structures exist?
Antiferromagnetic coulpling in spintronics Tomas Jungwirth Univ. of Nottingham, UK Institute of Physics ASCR & Charles Univ., Czech Rep. Hitachi and Univ.
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
11/13 Development of ferrite-based electronic-phase-change devices Tanaka lab. Tatsuya Hori.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
A spin-valve-like magnetoresistance of an antiferromagnet- based tunnel junction Xavier Marti,
Spin-orbit coupling and spintronics in ferromagnetic semiconductors (and metals) Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Photonics and Semiconductor Nanophysics Paul Koenraad, Andrea Fiore, Erik Bakkers & Jaime Gomez-Rivas COBRA Inter-University Research Institute on Communication.
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Aronzon B.A. PRB, 84, (2011) Rylkov V.V. Tugushev V.V. Nikolaev S.N. .
Semiconductors with Lattice Defects
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Experiments to probe the inverse Spin-Hall Effect in GaAs U. Pfeuffer, R. Neumann, D. Schuh, W. Wegscheider, D. Weiss 7. June 2008 University of Regensburg.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Dilute moment ferromagnetic semicinductors for spintronics
S.-C. Lee*, K.-R. Lee, and K.-H. Lee Computational Science Center
Molecular Beam Epitaxy (MBE) C Tom Foxon
Presentation transcript:

Charge Long-range magnetic order Implemented by Coupling Xavier Marti, 1.Metals: AMR,GMR 2.Semiconductors 3.Insulators Standard substrates Room temperature Grown on Boston Feb2012 Institute of Physics (Prague) – University Nottingham COBRA Inter-University Eindhoven -ORNL

Doping Temperature Xavier Marti, GaAs (Ga,Mn)AsMnAs Ferromagnetic Semiconductor

III-VFM T C (K)AFM T N (K) FeN100 FeP115 FeAs77 FeSb GdN72 GdP15 GdAs19 GdSb27 II-VIFM T C (K)AFM T N (K) MnO122 MnS152 MnSe173 MnTe323 EuO67 EuS16 EuSe5 EuTe10 Xavier Marti, Intrinsic III-V and II-VI semiconductors Maca et al., JMMM 324, 1606 (2012)

Large SOCLarge moment Large SOCLarge moment Schick et al., PRB 81, (2010) Xavier Marti,

Large SOCLarge moment Large SOCLarge moment Schick et al., PRB 81, (2010) Xavier Marti, T15 Room 213 Helena Reichlova

Large SOCLarge moment Large SOCLarge moment Schick et al., PRB 81, (2010) Xavier Marti,

Crystal and magnetic structure: Bronger et al, Z. anorg. allg. Chem. 539, 175 (1986) THEORY Semiconductor with huge spin-orbit coupling Xavier Marti,

InAs 4.27A 4.28A THIN FILM EPILAYERS V. Novak, et al., J. Cryst. Growth 323, 348 (2011)

log(intensity) InAs 4.27A 4.28A THIN FILM EPILAYERS

LiMnAs has a bandgap InAs LiMnAs 4.27A 4.28A I. Wijnheijmer et al, Appl. Phys. Lett. In press dI/dV map

Is LiMnAs the only choice available? Xavier Marti,

Xavier Marti, V. M. Ryzhkovsky, et al., Inorg. Mater (1995) A.E. Austin, et al., J. Appl. Phys (1962) TNTN RT

Xavier Marti, [110] _ CuMnAs grown on GaAs

Xavier Marti, CuMnAs grown on GaAs a b c a = b = Å c = Å GaAs, a = 5.65 Å

Xavier Marti, TEM: Jaume Gazquez, Oak Ridge NL Growth: R. Campion, Nottingham

Xavier Marti, TEM: Jaume Gazquez, Oak Ridge NL Growth: R. Campion, Nottingham GaAs CuMnAs

Xavier Marti, GaAs Fe 10 nm 300 K

GaAs CuMnAs Fe Xavier Marti, K Fe/CuMnAs exchange bias

GaAs CuMnAs Fe CuMnAs grown on GaAs Xavier Marti, K Fe/CuMnAs exchange bias

Xavier Marti, Prague : P. Wadley, H. Reichlova, M. Cukr, F. Maca, A.B. Shick, J. Masek, P. Horodyska, P. Nemec, V. Holy, J. Zemen, P. Kuzel, I. Nemec, K. Olejnik, J. Wunderlich, O. Stelmakhovych, K. Ulrihova, P. Beran, V. Novak, T. Jungwirth Nottingham : R. Campion, K. Edmonds, B. Gallagher, C.T. Foxon Eindhoven : I. Wijnheijmer, P. Koenraad ORNL: J. Gazquez, M. Varela Thanks for your attention LiMnAs CuMnAs