Introduction to Probability and Statistics Chapter 5 Discrete Distributions.

Slides:



Advertisements
Similar presentations
DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Advertisements

Chapter 12 Probability © 2008 Pearson Addison-Wesley. All rights reserved.
Chapter 5 Discrete Random Variables and Probability Distributions
Note 6 of 5E Statistics with Economics and Business Applications Chapter 4 Useful Discrete Probability Distributions Binomial, Poisson and Hypergeometric.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
CHAPTER 13: Binomial Distributions
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
The Binomial Probability Distribution and Related Topics
Chapter 5 Basic Probability Distributions
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 4-1 Introduction to Statistics Chapter 5 Random Variables.
Probability Distributions
Chapter 5 Discrete Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Class notes for ISE 201 San Jose State University
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 5 Several Discrete Distributions General Objectives: Discrete random variables are used in many practical applications. These random variables.
Binomial Distributions
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
Chap 5-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 5 Discrete Probability Distributions Business Statistics: A First.
Binomial distribution Nutan S. Mishra Department of Mathematics and Statistics University of South Alabama.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.
Binomial Distributions Calculating the Probability of Success.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Introduction Discrete random variables take on only a finite or countable number of values. Three discrete probability distributions serve as models for.
Copyright ©2011 Nelson Education Limited The Binomial Experiment n identical trials. 1.The experiment consists of n identical trials. one of two outcomes.
Chapter 7 Lesson 7.5 Random Variables and Probability Distributions
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
Random Variables. A random variable X is a real valued function defined on the sample space, X : S  R. The set { s  S : X ( s )  [ a, b ] is an event}.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted by.
Bernoulli Trials Two Possible Outcomes –Success, with probability p –Failure, with probability q = 1  p Trials are independent.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
Chapter 4. Discrete Random Variables A random variable is a way of recording a quantitative variable of a random experiment. A variable which can take.
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
King Saud University Women Students
Definition A random variable is a variable whose value is determined by the outcome of a random experiment/chance situation.
4.2 Binomial Distributions
Statistics 3502/6304 Prof. Eric A. Suess Chapter 4.
Probability Distributions, Discrete Random Variables
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 7A PROBABILITY DISTRIBUTIONS FOR RANDOM VARIABLES (BINOMIAL DISTRIBUTION)
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Binomial Distributions Chapter 5.3 – Probability Distributions and Predictions Mathematics of Data Management (Nelson) MDM 4U.
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
1 Chapter 8 Random Variables and Probability Distributions IRandom Sampling A.Population 1.Population element 2.Sampling with and without replacement.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Binomial Distributions Chapter 5.3 – Probability Distributions and Predictions Mathematics of Data Management (Nelson) MDM 4U Authors: Gary Greer (with.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
1. 2 At the end of the lesson, students will be able to (c)Understand the Binomial distribution B(n,p) (d) find the mean and variance of Binomial distribution.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Chapter Five The Binomial Probability Distribution and Related Topics
Discrete Probability Distributions
Discrete Probability Distributions
Discrete Random Variables
ENGR 201: Statistics for Engineers
Chapter 5 Some Important Discrete Probability Distributions
Introduction to Probability and Statistics
Lecture 11: Binomial and Poisson Distributions
Introduction to Probability and Statistics
Elementary Statistics
Chapter 11 Probability.
Applied Statistical and Optimization Models
Presentation transcript:

Introduction to Probability and Statistics Chapter 5 Discrete Distributions

Discrete Random Variables Discrete random variables take on only a finite or countable many of values. Number of heads in 1000 trials of coin tossing Number of cars that enter UNI in a certain day Number of heads in 1000 trials of coin tossing Number of cars that enter UNI in a certain day

Binomial Random Variable coin-tossing experiment binomial random variable.The coin-tossing experiment is a simple example of a binomial random variable. Toss a fair coin n = 3 times and record x = number of heads. xp(x)p(x) 01/8 13/8 2 31/8

Example Toss a coin 10 times For each single trial, probability of getting a head is 0.4 Let x denote the number of heads

The Binomial Experiment n identical trials. 1.The experiment consists of n identical trials. one of two outcomes 2.Each trial results in one of two outcomes, success (S) or failure (F). remains constant 3.Probability of success on a single trial is p and remains constant from trial to trial. The probability of failure is q = 1 – p. independent 4.Trials are independent. x, the number of successes in n trials. 5.Random variable x, the number of successes in n trials. x – Binomial random variable with parameters n and p x – Binomial random variable with parameters n and p

Binomial or Not? A box contains 4 green M&Ms and 5 red ones Take out 3 with replacement x denotes number of greens Is x binomial? Yes, 3 trials are independent with same probability of getting a green. m m mm mm

Binomial or Not? A box contains 4 green M&Ms and 5 red ones Take out 3 without replacement x denotes number of greens Is x binomial? NO, when we take out the second M&M, the probability of getting a green depends on color of the first. 3 trials are dependent. m m mm mm

Binomial or Not? Very few real life applications satisfy these requirements exactly. Select 10 people from the U.S. population, and suppose that 15% of the population has the Alzheimer’s gene. For the first person, p = P(gene) =.15 For the second person, p  P(gene) =.15, even though one person has been removed from the population… For the tenth person, p  P(gene) =.15 Yes, independent trials with the same probability of success

Binomial Random Variable Example:Example: A geneticist samples 10 people and x counts the number who have a gene linked to Alzheimer’s disease. Success:Success: Failure:Failure: Number ofNumber of trials: trials: Probability of SuccessProbability of Success Has gene Doesn’t have gene n = 10 p = P(has gene) = 0.15 Rule of Thumb: Sample size n; Population size N; If n/N <.05, the experiment is Binomial.

Example Toss a coin 10 times For each single trial, probability of getting a head is 0.4 Let x denote the number of heads Find probability of getting exactly 3 heads. i.e. P(x=3). Find probability distribution of x

Solution Simple events: Event A: {strings with exactly 3 H’s}; Probability of getting a given string in A: Probability of event A. i.e. P(x=3) Number of strings in A Strings of H’s and T’s with length 10 HTTTHTHTTT TTHHTTTTHT… HTTTHTHTTT

A General Example Toss a coin n times; For each single trial, probability of getting a head is p; Let x denote the number of heads; Find the probability of getting exactly k heads. i.e. P(x=k) Find probability distribution of x.

Binomial Probability Distribution For a binomial experiment with n trials and probability p of success on a given trial, the probability of k successes in n trials is

Binomial Mean, Variance and Standard Deviation For a binomial experiment with n trials and probability p of success on a given trial, the measures of center and spread are:

n = p =x = success =Example A marksman hits a target 80% of the time. He fires 5 shots at the target. What is the probability that exactly 3 shots hit the target? 5.8hit# of hits

Example What is the probability that more than 3 shots hit the target?

Example x = number of hits. What are the mean and standard deviation for x? (n=5,p=.8) 

Cumulative Probability cumulative probability tables You can use the cumulative probability tables to find probabilities for selected binomial distributions. Binomial cumulative probability: P(x  k) = P(x = 0) +…+ P(x = k) Binomial cumulative probability: P(x  k) = P(x = 0) +…+ P(x = k)

Key Concepts I. The Binomial Random Variable 1. Five characteristics: the experiment consists of n identical trials; each resulting in either success S or failure F; probability of success is p and remains constant; all trials are independent; x is the number of successes in n trials. 2. Calculating binomial probabilities a. Formula: b. Cumulative binomial probability P(x  k). 3. Mean of the binomial random variable: 4. Variance and standard deviation:

Example According to the Humane Society of the United States, there are approximately 40% of U.S. households own dogs. Suppose 15 households are selected at random. Find 1.probability that exactly 8 households own dogs? 2.probability that at most 3 households own dogs? 3.probability that more than 10 own dogs? 4.the mean, variance and standard deviation of x, the number of households that own dogs.

n = p =x = success =Example According to the Humane Society of the United States, there are approximately 40% of U.S. households own dogs. Suppose 15 households are selected at random. What is probability that exactly 8 households own dogs? 15.4own dog# households that own dog

Example What is the probability that at most 3 households own dogs?

Example What are the mean, variance and standard deviation of random variable x? (n=15, p=.4)

Binomial Probability Probability distribution for Binomial random variable x with n=15, p=0.4

Example 1.What are the mean, variance and standard deviation of random variable x? 2.Calculate interval within 2 standard deviations of mean. What values fall into this interval? 3.Find the probability that x fall into this interval.