Chapter 5 Discrete Probability Distributions. Probability Experiment A probability experiment is any activity that produces uncertain or “random” outcomes.

Slides:



Advertisements
Similar presentations
Chapter 5 Some Important Discrete Probability Distributions
Advertisements

Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Note 6 of 5E Statistics with Economics and Business Applications Chapter 4 Useful Discrete Probability Distributions Binomial, Poisson and Hypergeometric.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Probability Distribution
Chapter 4 Discrete Random Variables and Probability Distributions
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 4-1 Introduction to Statistics Chapter 5 Random Variables.
1 Business 90: Business Statistics Professor David Mease Sec 03, T R 7:30-8:45AM BBC 204 Lecture 17 = Finish Chapter “Some Important Discrete Probability.
1 Business 90: Business Statistics Professor David Mease Sec 03, T R 7:30-8:45AM BBC 204 Lecture 15 = Start Chapter “Some Important Discrete Probability.
Visualizing Events Contingency Tables Tree Diagrams Ace Not Ace Total Red Black Total
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Chapter 5 Discrete and Continuous Probability Distributions
Chapter 5 Probability Distributions
Discrete Probability Distributions
Chapter 5 Discrete Probability Distributions
5-1 Business Statistics Chapter 5 Discrete Distributions.
Statistics Alan D. Smith.
Discrete and Continuous Probability Distributions.
Chapter 5 Discrete Probability Distribution I. Basic Definitions II. Summary Measures for Discrete Random Variable Expected Value (Mean) Variance and Standard.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
Chap 5-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 5 Discrete Probability Distributions Business Statistics: A First.
QA in Finance/ Ch 3 Probability in Finance Probability.
1 If we can reduce our desire, then all worries that bother us will disappear.
5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete Probability Distributions.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Binomial Distributions Calculating the Probability of Success.
Chapter 4 Discrete Random Variables. Two Types of Random Variables Random Variable –Variable that assumes numerical values associated with random outcomes.
Introduction Discrete random variables take on only a finite or countable number of values. Three discrete probability distributions serve as models for.
Copyright ©2011 Nelson Education Limited The Binomial Experiment n identical trials. 1.The experiment consists of n identical trials. one of two outcomes.
Using Probability and Discrete Probability Distributions
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
© 2005 McGraw-Hill Ryerson Ltd. 5-1 Statistics A First Course Donald H. Sanders Robert K. Smidt Aminmohamed Adatia Glenn A. Larson.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete.
Definition A random variable is a variable whose value is determined by the outcome of a random experiment/chance situation.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Mistah Flynn.
Probability Distribution
Probability Distributions, Discrete Random Variables
Chapter 5 Discrete Random Variables Probability Distributions
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Chap 5-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 5 Discrete and Continuous.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Chap 5-1 Chapter 5 Discrete Random Variables and Probability Distributions Statistics for Business and Economics 6 th Edition.
Chap 5-1 Discrete and Continuous Probability Distributions.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
Chapter Five The Binomial Probability Distribution and Related Topics
Discrete Probability Distributions
Random Variable.
Business Statistics Topic 4
Chapter 5 Some Important Discrete Probability Distributions
Probability distributions
Random Variable.
Business Statistics Chapter 5 Discrete Distributions.
Continuous Random Variable Normal Distribution
If the question asks: “Find the probability if...”
Introduction to Probability and Statistics
Elementary Statistics
The Binomial Probability Distribution and Related Topics
Chapter 11 Probability.
Presentation transcript:

Chapter 5 Discrete Probability Distributions

Probability Experiment A probability experiment is any activity that produces uncertain or “random” outcomes

Random Variable A random variable is a rule or function that translates the outcomes of a probability experiment into numbers.

Table 5.1 Illustrations of Random Variables EXPERIMENTPossible Random VariablesType of Variable Commuting to workTime it takes to get to work Number of red lights on the way Amount of gas consumed Continuous Discrete Continuous Advertising a productNumber of customer responses Number of units sold Discrete Taking inventoryNumber of damaged items found Remaining shelf life of an item Discrete Continuous Playing a round of golfDriving distance off the first tee Number of pars Number of lost balls Continuous Discrete Manufacturing a productAmount of waste produced (lbs.) Number of units finished in an hour Continuous Discrete Interviewing for a jobNumber of rejections Duration of the interview Elapsed time before being hired Discrete Continuous Buying stocksNumber of your stocks that increase in value Amount of sleep lost from worry Discrete Continuous

Discrete Random Variable A discrete random variable has separate and distinct values, with no values possible in between.

Continuous Random Variable A continuous random variable can take on any value over a given range or interval.

Probability Distribution A probability distribution identifies the probabilities that are assigned to all possible values of a random variable.

Producing a Discrete Probability Distribution Step 1: Defining the Random Variable Step 2: Identifying Values for the Random Variable Step 3: Assigning Probabilities to Values of the Random Variable

Figure 5.1 Probability Tree for the Management Training Example J (.7) Jones Fails S (.9) J (.7) S' (.1) Smith Passes Smith Fails Jones Passes S∩J S∩J’ S'∩J S'∩J’ Jones Fails J' (.3) Jones Passes J' (.3) (1) (2) (3) (4) Outcome x P(x)

Probability Distribution for the Training Course Illustration Number of Managers Passing x Probability P(x)

Figure 5.2 Graphing the Management Training Distribution P(x) Number of Managers Passing x

Expected Value for a (5.1) Discrete Probability Distribution E( x ) =  x  P( x )

Distribution Variance (5.2)  2 =

The Binomial Distribution

Figure 5.3 Probability Tree for the Coin Toss Example H (.4) T (.6) H (.4).096 T (.6) H (.4).096 H (.4) T (.6) H (.4) T (.6) Heads Heads 1 Head 2 Heads 1 Head 0 Heads

The Binomial Conditions (1)The experiment involves a number of “trials”— that is, repetitions of the same act. We’ll use n to designate the number of trials. (2) Only two outcomes are possible on each of the trials. This is the “bi” part of “binomial.” We’ll typically label one of the outcomes a success, the other a failure. (3) The trials are statistically independent. Whatever happens on one trial won’t influence what happens on the next. (4) The probability of success on any one trial remains constant throughout the experiment. For example, if the coin in a coin-toss experiment has a 40% chance of turning up heads on the first toss, then that 40% probability must hold for every subsequent toss. The coin can’t change character during the experiment. We’ll normally use p to represent this probability of success.

The Binomial Probability Function (5.4) P (x) =

Expected Value for a (5.5) Binomial Distribution E(x) = nּ p

Variance for a Binomial Distribution (5.6)  2 = n ּpּ(1-p)

Standard Deviation for a (5.7) Binomial Distribution  =

Symmetric Figure 5.4 Some Possible Shapes for a Binomial Distribution Positively Skewed x P(x) x P(x) Negatively Skewed x P(x)

The Poisson Distribution

The Poisson Conditions (1)We need to be assessing probability for the number of occurrences of some event per unit time, space, or distance. (2) The average number of occurrences per unit of time, space, or distance is constant and proportionate to the size of the unit of time, space or distance involved. (3) Individual occurrences of the event are random and statistically independent.

Poisson Probability Function (5.8) P(x) =

Figure 5.5 Graphing the Poisson Distribution for  = 1 mean  =1 P(x) x

Figure 5.6 Matching Binomial and Poisson Distributions x P(x) BINOMIAL n  = 20, p =.10 POISSON  = 2 P(x) x