N. Simou, G. Stoilos, V. Tzouvaras, G. Stamou, S. Kollias 4th International Workshop on Uncertainty Reasoning for the Semantic.

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

1 ISWC-2003 Sanibel Island, FL IMG, University of Manchester Jeff Z. Pan 1 and Ian Horrocks 1,2 {pan | 1 Information Management.
The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE2008) Department of Electrical and Computer Engineering
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
OWL - DL. DL System A knowledge base (KB) comprises two components, the TBox and the ABox The TBox introduces the terminology, i.e., the vocabulary of.
An Introduction to Description Logics
Ontological Logic Programming by Murat Sensoy, Geeth de Mel, Wamberto Vasconcelos and Timothy J. Norman Computing Science, University of Aberdeen, UK 1.
1 A Description Logic with Concrete Domains CS848 presentation Presenter: Yongjuan Zou.
Organizing research publications in Web 3 enviroment Anastasiou Lucas Vasilis Tzouvaras
Of 27 lecture 7: owl - introduction. of 27 ece 627, winter ‘132 OWL a glimpse OWL – Web Ontology Language describes classes, properties and relations.
High-level Data Access Based on Query Rewritings Ekaterina Stepalina Higher School of Economics.
DL-LITE: TRACTABLE DESCRIPTION LOGICS FOR ONTOLOGIES AUTHORS: DIEGO CALVANESE, GIUSEPPE DE GIACOMO, DOMENICO LEMBO, MAURIZIO LENZERINI, RICCARDO ROSATI.
December 2, 2013 Thessaloniki, Greece GNORASI WORKSHOP Charalampos Doulaverakis CERTH/ITI Knowledge and processing algorithms for remote sensing data Reasoning.
Fuzzy DL, Fuzzy SWRL, Fuzzy Carin (report from visit to Athens) M.Vacura VŠE Praha (used materials by G.Stoilos, NTU Athens)
Building and Analyzing Social Networks Web Data and Semantics in Social Network Applications Dr. Bhavani Thuraisingham February 15, 2013.
Analyzing Minerva1 AUTORI: Antonello Ercoli Alessandro Pezzullo CORSO: Seminari di Ingegneria del SW DOCENTE: Prof. Giuseppe De Giacomo.
Vassilis Papataxiarhis, V.Tsetsos, I.Karali, P.Stamatopoulos, and S.Hadjiefthymiades Department of Informatics and Telecommunications University.
Semantic Web Tools Vagan Terziyan Department of Mathematical Information Technology, University of Jyvaskyla ;
Ontologies and the Semantic Web by Ian Horrocks presented by Thomas Packer 1.
A Probabilistic Framework for Information Integration and Retrieval on the Semantic Web by Livia Predoiu, Heiner Stuckenschmidt Institute of Computer Science,
Context Representation and Reasoning with Formal Ontologies Juan Gómez-Romero 1,2, University Carlos III of Madrid (Spain) Fernando Bobillo 2, University.
Annotated RDF Octavian Udrea Diego Reforgiato Recupero V.S. Subrahmanian University of Maryland.
Description Logics. Outline Knowledge Representation Knowledge Representation Ontology Language Ontology Language Description Logics Description Logics.
From SHIQ and RDF to OWL: The Making of a Web Ontology Language
DL systems DL and the Web Ilie Savga
ANHAI DOAN ALON HALEVY ZACHARY IVES Chapter 12: Ontologies and Knowledge Representation PRINCIPLES OF DATA INTEGRATION.
Audumbar Chormale Advisor: Dr. Anupam Joshi M.S. Thesis Defense
FiRE Fuzzy Reasoning Engine Nikolaos Simou National Technical University of Athens.
Managing Large RDF Graphs (Infinite Graph) Vaibhav Khadilkar Department of Computer Science, The University of Texas at Dallas FEARLESS engineering.
BiodiversityWorld GRID Workshop NeSC, Edinburgh – 30 June and 1 July 2005 Metadata Agents and Semantic Mediation Mikhaila Burgess Cardiff University.
Institute of Informatics and Telecommunications – NCSR “Demokritos” Bootstrapping ontology evolution with multimedia information extraction C.D. Spyropoulos,
An Introduction to Description Logics. What Are Description Logics? A family of logic based Knowledge Representation formalisms –Descendants of semantic.
1 SAMT’08 Semantic-driven multimedia retrieval with the MPEG Query Format Ruben Tous and Jaime Delgado Distributed Multimedia Applications Group (DMAG)
Database Support for Semantic Web Masoud Taghinezhad Omran Sharif University of Technology Computer Engineering Department Fall.
Ming Fang 6/12/2009. Outlines  Classical logics  Introduction to DL  Syntax of DL  Semantics of DL  KR in DL  Reasoning in DL  Applications.
Using the TBox to Optimise SPARQL Queries Birte Glimm Yevgeny Kazakov Ilianna Kollia and Giorgos Stamou CS 848 Paper Critique Vishnu Prathish.
CORPORUM-OntoExtract Ontology Extraction Tool Author: Robert Engels Company: CognIT a.s.
Metadata. Generally speaking, metadata are data and information that describe and model data and information For example, a database schema is the metadata.
Dimitrios Skoutas Alkis Simitsis
DRAGO: Distributed Reasoning Architecture for the Semantic Web Andrei Tamilin and Luciano Serafini Work is supported by 1 June 2005 Second European Semantic.
An Introduction to Description Logics (chapter 2 of DLHB)
Semantic web course – Computer Engineering Department – Sharif Univ. of Technology – Fall Description Logics: Logic foundation of Semantic Web Semantic.
Efficient RDF Storage and Retrieval in Jena2 Written by: Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds Presented by: Umer Fareed 파리드.
Using Several Ontologies for Describing Audio-Visual Documents: A Case Study in the Medical Domain Sunday 29 th of May, 2005 Antoine Isaac 1 & Raphaël.
A Systemic Approach for Effective Semantic Access to Cultural Content Ilianna Kollia, Vassilis Tzouvaras, Nasos Drosopoulos and George Stamou Presenter:
More on Description Logic(s) Frederick Maier. Note Added 10/27/03 So, there are a few errors that will be obvious to some: So, there are a few errors.
Using Fuzzy DLs to Enhance Semantic Image Analysis S. Dasiopoulou, I. Kompatsiaris, M.G.Strintzis 3 rd International Conference on Semantic and Digital.
1 Comparison and Combination of the Expressive Power of Description Logics and Logic Programs Jidi (Judy) Zhao December 7, 2015.
DL Overview Second Pass Ming Fang 06/19/2009. Outlines  Description Languages  Knowledge Representation in DL  Logical Inference in DL.
KR A Principled Framework for Modular Web Rule Bases and its Semantics Anastasia Analyti Institute of Computer Science, FORTH-ICS, Greece Grigoris.
Application Ontology Manager for Hydra IST Ján Hreňo Martin Sarnovský Peter Kostelník TU Košice.
ece 627 intelligent web: ontology and beyond
1 Instance Store Database Support for Reasoning over Individuals S Bechhofer, I Horrocks, D Turi. Instance Store - Database Support for Reasoning over.
Knowledge Representation and Reasoning University "Politehnica" of Bucharest Department of Computer Science Fall 2011 Adina Magda Florea
Presented by Kyumars Sheykh Esmaili Description Logics for Data Bases (DLHB,Chapter 16) Semantic Web Seminar.
Of 29 lecture 15: description logic - introduction.
Semantic Interoperability in GIS N. L. Sarda Suman Somavarapu.
WonderWeb. Ontology Infrastructure for the Semantic Web. IST WP4: Ontology Engineering Heiner Stuckenschmidt, Michel Klein Vrije Universiteit.
LDK R Logics for Data and Knowledge Representation Description Logics: family of languages.
Ontology Technology applied to Catalogues Paul Kopp.
Artificial Intelligence Logical Agents Chapter 7.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Knowledge Representation Part II Description Logic & Introduction to Protégé Jan Pettersen Nytun.
ece 720 intelligent web: ontology and beyond
Jie Bao, Doina Caragea and Vasant G Honavar
Analyzing and Securing Social Networks
ece 720 intelligent web: ontology and beyond
Logics for Data and Knowledge Representation
CIS Monthly Seminar – Software Engineering and Knowledge Management IS Enterprise Modeling Ontologies Presenter : Dr. S. Vasanthapriyan Senior Lecturer.
A framework for ontology Learning FROM Big Data
Presentation transcript:

N. Simou, G. Stoilos, V. Tzouvaras, G. Stamou, S. Kollias 4th International Workshop on Uncertainty Reasoning for the Semantic Web Sunday 26 th October, 2008 Karlsruhe, Germany Storing and Querying Fuzzy Knowledge in the Semantic Web National Technical University of Athens, Greece School of Electrical and Computer Engineering Department of Computer Science Image, Video and Multimedia Laboratory

Motivation Ontologies and OWL Language play a significant role in the Semantic Web Optimized Reasoners (Fact, Pellet) Various tools for storing and querying OWL ontologies Crisp DLs lack the ability to represent uncertain information Fuzzy DLs Fuzzy Reasoners (FiRE, fuzzyDL) No work on persistent storage and querying for expressive fuzzy DLs ([Straccia2007] and [Pan 2007] are based on fuzzy DL-Lite)

Contribution It presents a novel framework for persistent storage and querying of expressive fuzzy knowledge bases It integrates Fuzzy Reasoner FiRE with the RDF Triple Store Sesame It provides experimental evaluation of the proposed architecture using a real-world industrial use case scenario

Outline Queries in crisp DL RDF Stores The fuzzy DL f-SHIN Fuzzy Extensions to Queries Fuzzy OWL Syntax in Triples Sesame integration with FiRE Evaluation

Queries in DLs Conjunctive Queries e.g. x <- Man(x) ^ hasChild(x,y) ^ Man(y) Query answering algorithms for crisp DLs Are highly complex A practically scalable system is not available Various tools support queries for crisp DLs

RDF Stores Data storage systems for storing and querying ontologies Sesame, Jena, Kowari Ontologies are stored in various triples format RDF/XML N Triples Turtle Support of Query languages SPARQL SeRQL (Sesame) Plugins for incoplete OWL DL querying and reasoning (Sesame-OWLim)

Fuzzy SHIN - Syntax A fuzzy extension of DL SHIN f-SHIN concepts are formed in the same way as in SHIN C,D ::=⊤ | ⊥ | ¬C | C ⊓ D | C ⊔ D | ∃R.C | ∀R.C | ≥nR | ≤nR R,P::= R - | Trans(R) | P⊑R Assertions are extended to fit uncertainty 〈 nick : Tall ≥ 0.7 〉 〈 (nick, theo) : isFriend ≥ 0.6 〉

Fuzzy SHIN - Inference Services Entailment “Does axiom Ψ logically follow from the ontology T?” Satisfiability “Can the concept C have any instances with degree of participation ⋈ n in models of ontology T?” Subsumption “Is the concept D more general than the concept C in models of the ontology T?” Greatest Lower Bound (GLB) “What is the greatest degree n that our ontology entails an individual a to participate in a concept C?”

Fuzzy Extensions to Queries Conjunctive threshold Queries (CTQs) [Pan2007 et al] E.g. x 0.6 ^ hasFriend(x,y)>0.7 ^ Short(y) > 0.8 General Fuzzy Conjunctive Queries (GFCQs) [Pan2007 et al] E.g. x <- Tall(x):0.6 ^ hasFriend(x,y):0.7 ^ Short(y):0.8 Supported only in Fuzzy DL-Lite

Fuzzy OWL Syntax in Triples Refication Weak and ill defined model Limited support by RDF tools Datatypes Concrete feature like datatypes are not appropriate for the representation of abstract information like fuzzy assertions The proposed syntax Is simple and clear Is based on the use of blank nodes and properties

Fuzzy OWL Syntax in Triples Fuzzy concept assertion paul frdf:membership _:paulmembTall. _:paulmembTall rdf:type Tall. _:paulmembTall frdf:degree “n^^xsd:float”. _:paulmembTall frdf:ineqType “>=”. Fuzzy role assertion paul frdf:paulFriendOffrank frank. frdf:paulFriendOffrank rdf:type FriendOf. frdf:paulFriendOffrank frdf:degree “n^^xsd:float”. frdf:paulFriendOffrank frdf:ineqType “>=”.

Fuzzy Reasoning Engine FiRE It is a JAVA based implementation available at Can be used through a user friendly interface or as an API Currently supports F-SHIN The reasoning algorithm uses the fuzzy tableau [Stoilos 2007] Its syntax is based on Knowledge Representation System Specification appropriately extended to fit uncertainty E.g. (instance eve Model >= 0.7) (related peter eve has-friend >= 0.8)

Sesame integration with FiRE RDF-Store Sesame is used as a back end for storing and querying. FiRE is used as a front end permitting a user to Write or edit a fuzzy knowledge base (Fuzzy KRSS Format) Ask the GLB of all the individuals of the KB in all the concepts (primitive and defined) of the KB Export the explicit and implicit knowledge to a Sesame repository using the proposed Fuzzy OWL syntax Import a fuzzy knowledge base from a Sesame repository Perform CTQs and GFCQs

Querying-I Conjunctive threshold Queries (CTQs) FiRE Syntax x,y 0.6 ^ hasfriend(x,y) > 0.7 ^ Woman(y) ^ GoodLooking(y) >= 0.8 The query is converted to a SPARQL query based on the Fuzzy OWL syntax in triples The query is evaluated by Sesame The results are visualized by FiRE

Querying-II General Fuzzy Conjunctive Queries (GFCQs) FiRE Syntax x,y <- Man(x)^ Tall(x) : 0.6 ^ has-friend(x,y) : 0.7 ^ Woman(y) ^ GoodLooking(y) : 0.8 A SPARQL query is constructed in a way that The membership degrees of every Role or Concept used in atoms criteria are retrieved for the individuals that satisfy all the atoms The results are processed according to the query weights by FiRE permitting Fuzzy threshold queries using fuzzy implication Fuzzy aggregation queries using fuzzy aggregation functions Fuzzy weighted queries using weighted t-norms The results are visualized by FiRE

Fuzzy Query Examples (instance peter Man) (instance peter Thin >= 0.6 ) (instance peter Clever >= 0.8 ) (instance peter Tall >= 0.7 ) (instance eve Model >= 0.7) (related peter eve has-friend >= 0.7) x,y 0.2 ^ Clever(x) > 0.3 ^ has-friend(x,y) > 0.4 ^ Model(y) > 0.6 x :peter y:eve x,y <- Tall(x) : 0.2 ^ Clever(x) : 0.3 ^ has-friend(x,y) : 0.4 ^ Model(y) : 0.6 Using fuzzy aggregation queries i.e. : 0.72

Use case A production company had a database of 2140 models used for casting purposes Rich information was stored for each model... i.e. age, height, body type, fitness type, tooth condition… Inaccessible to the producers because The information was fuzzy The information was not semantically organized Retrieval of models based on threshold criteria was inaccurate The combination of information about models that would form profession-like characteristics (like Teacher, Mafia, Scientist ) was extremely difficult

The Fuzzy Knowledge base The set of Concepts consisted of the features described in the database Age was fuzzified giving concepts Baby, Kid, Teen, 20s,30s,40s, 60s and Old Height was fuzzified depending on the model’s gender giving concepts Very_Short, Short, Normal_Height, Tall, Very_Tall The set of Roles consisted of some special characteristics i.e. has-hairLength, has-hairColor… The set of individuals consisted of the models An expressive terminology was defined with 33 concepts that refered to the professions of interest e.g. Scientist ≡ Male⊓Serious ⊓ (40s ⊔ 50s) ⊓ ∃has-eyeCondition.Glasses

Results Explicit knowledge 2140 individuals 82 Concepts 20 Roles assertions (Fuzzy KRSS) Using GLB for all individuals in all the concepts of the KB 2430 implicit assertions were extracted (Fuzzy KRSS) Average time was 1112 milliseconds per individual Upload time to Sesame repository varied from 200 millisecs in an empty repository ( triples) to 700 millisecs in repository (over triples) Total triples (Fuzzy OWL Triples)

Results Query Native Memory x = x = 0.8 ^ NormalHeight(x)>= x = 0.8 ^ 20s(x)>=0.5^hashairLength(x,y) ^ Long(y)>= x <- Scientist(x): x <- Father(x)^ Teacher(x) :0.8 ^NormalHeight(x): x <- Legs(x)^Eyes(x):0.8 ^ 20s(x):0.5^hashairLength(x,y)^ Long(y):

Conclusions Limitations Not complete query answering system Queries are issued against stored assertions to an RDF repository Queries on Sesame Repositories are not scalable Dependence on size of the repository Dependence on the number of query atoms …However Incompleteness is minimized by GLB Query answering for crisp DLs is still an open problem Query algorithms are highly complex No practically scalable system is known

References [Pan2007] J.Z. Pan, G. Stamou, G. Stoilos, and E. Thomas. Expressive querying over fuzzy DL-Lite ontologies. In Proceedings of the International Workshop on Description Logics (DL 2007), [Stoilos2007] G.Stoilos, G.Stamou, V.Tzouvaras, J.Z.Pan, and I.Horrocks. Reasoning with very expressive fuzzy description logics. Journal of Artificial Intelligence Research, 30(5): , [Straccia2007] U.Straccia and G.Visco. DLMedia: an ontology mediated multimedia information retrieval system. In Proceeedings of the International Workshop on Description Logics (DL 2007), 2007.

Questions - Acknowledgements Thank you! This work is supported by the FP6 Network of Excellence EU project X- Media (FP ) and K-space (IST ).

Fuzzy SHIN - Knowledge base A fuzzy knowledge base is a triple Σ= (T,R, A) where: T is a finite set of fuzzy inclusion axioms: A ⊑ C or fuzzy equivalence axioms : A ≡ C, called a fuzzy TBox R is a finite set of fuzzy transitive role axioms: Trans(R) or fuzzy role inclusion axioms P ⊑ R, called a fuzzy RBox A is a finite set of fuzzy assertions: 〈 a : C ⋈ n 〉 or 〈 (a, b) : R ⋈ n 〉, where ⋈ ∈ {≥,>,<, ≤}, called a fuzzy ABox.

Fuzzy SHIN - Semantics A fuzzy interpretation is a pair I = (Δ I ×.I ) where Δ I is the domain of interpretation and.I is the interpretation function which maps An individual name α ∈ I to an element α I ∈ Δ I A concept name A to a membership function A I : Δ I → [ 0,1 ] A role name R to a membership function R I : Δ I × Δ I → [ 0,1 ] Fuzzy set theoretic operations are used to give semantics to complex concepts Lukasiewicz Fuzzy negation c(a) = 1-a Lukasiewicz Fuzzy intersection t(a,b) = min(a,b) Lukasiewicz Fuzzy union u(a,b) = max (a,b) Kleenes-Dienes Fuzzy implication ℑ (a,b) = max(1-a, b)

A SPARQL Query SELECT ?x WHERE { ?x ns5:membership ?Node1. ?Node1 rdf:type ?Concept1. ?Node1 ns5:ineqType ?IneqType1. ?Node1 ns5:degree ?Degree1. FILTER regex (?Concept1, "CONCEPTS#Tall") FILTER regex (?IneqType1,">") FILTER (?Degree1 >= "0.8^^xsd:float") ?BlankRole2 ns5:ineqType ?IneqType2. ?BlankRole2 ns5:degree ?Degree2. ?BlankRole2 rdf:type ?Role2. ?x BlankRole2 ?y. FILTER regex (?Role2, "ROLES#has-friend") FILTER regex (?IneqType1,">") FILTER (?Degree2 >= "1.0^^xsd:float")... }