Bulk Topological Superconductor. Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2.

Slides:



Advertisements
Similar presentations
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Advertisements

Tunneling Conductance and Surface States Transition in Superconducting Topological Insulators Yukio Tanaka (Nagoya University)
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Topological Superconductors
Chi-Ken Lu Physics Department, Simon Fraser University, Canada
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Multichannel Majorana Wires
Status of TI Materials. Not continuously deformable Topological Invariant Topology & Topological Invariant Number of Holes Manifold of wave functions.
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Junctions of Dirac Materials K. Sengupta Indian Association for the Cultivation of Sciences, Kolkata.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Effective Topological Field Theories in Condensed Matter Physics
Robustness of Majorana induced Fractional Josephson Effect
Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.
Topology of Andreev bound state
Wittenberg 2: Tunneling Spectroscopy
Majorana Fermions and Topological Insulators
Robustness of Topological Superconductivity in Proximity-Coupled Topological Insulator Nanoribbons Tudor D. Stanescu West Virginia University Collaborators:
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Probing and Manipulating Majorana Fermions in SO Coupled Atomic Fermi Gases Xia-Ji Liu CAOUS, Swinburne University Hawthorn, July.
Subgap States in Majorana Wires
Topological Insulators and Beyond
Organizing Principles for Understanding Matter
Topological insulators and superconductors
Electronic Structure of A IV B VI · m A 2 V B 3 VI (A IV = Ge,Sn,Pb; A V = Bi,Sb; B VI = Te,Se; m=1-3) Topological Insulators S.V. Eremeev, T.V. Menshchikova,
Topology and solid state physics
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Topological insulators and superconductors
Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan Y. Tanuma Akita University, Japan Alexander Golubov Twente University, The Netherlands.
Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan Y. Tanuma Akita University, Japan Alexander Golubov Twente University, The Netherlands.
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
1 Topological Quantum Phenomena and Gauge Theories Kyoto University, YITP, Masatoshi SATO.
Thermoelectric properties of ultra-thin Bi 2 Te 3 films Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical and Computer.
Opportunities in Basic Science: Quantum Fluids and Solids 3He Brief introduction: solid and liquid 3He 3He as topological quantum matter Broken symmetry.
Sergey Savrasov Department of Physics, University of California, Davis Turning Band Insulators into Exotic Superconductors Xiangang Wan Nanjing University.
Topological Insulators and Topological Band Theory
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Collective modes and interacting Majorana fermions in
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Introduction to topological superconductivity and Majorana fermions
Ady Stern (Weizmann) Papers: Stern & Halperin , PRL
Tami Pereg-Barnea McGill University CAP Congress, June 16, 2014.
Electrons on the brink: Fractal patterns may be key to semiconductor magnetism Ali Yazdani, Princeton University, DMR Princeton-led team of scientists.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Delay times in chiral ensembles— signatures of chaotic scattering from Majorana zero modes Henning Schomerus Lancaster University Bielefeld, 12 December.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Axion electrodynamics on the surface of topological insulators
Dirac’s inspiration in the search for topological insulators
Topological Insulators
Realization of Axion Electrodynamics on Topological Insulators Jisoon IhmJisoon Ihm Department of Physics POSTECH June 1, 2016.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Topological Insulators
Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.
1 The 5/2 Edge IPAM meeting on Topological Quantum Computing February 26- March 2, 2007 MPA Fisher, with Paul Fendley and Chetan Nayak Motivation: FQHE:
Lei Hao (郝雷) and Ting-Kuo Lee (李定国)
From fractionalized topological insulators to fractionalized Majoranas
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Introduction to topological insulators and STM/S on TIs
Electronic structure of topological insulators and superconductors
Topological Insulators
Lecture 3: Topological insulators
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Weiyi Wang, Yanwen Liu, Cheng Zhang, Ping Ai, Faxian Xiu
Introduction to topological superconductivity and Majorana fermions
Presentation transcript:

Bulk Topological Superconductor

Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2 Z - Schnyder-Ryu-Furusaki-Ludwig (2008) Kitaev (2009) “Periodic Table” of topological invariant Chiral p-wave SC in TI surface Surface State of TIs Bogoliubov qp EFEF TI SC  = 0 = 0  =  =  Fu & Kane (2008) EFEF 22 Majorana Edge State Sr 2 RuO 4 (D) (DIII)

Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2 Z - Schnyder-Ryu-Furusaki-Ludwig (2008) Kitaev (2009) “Periodic Table” of topological invariant Kitaev model 1D Nanowire of InSb or InAs Majorana End-State Alicea, RPP (2012) Oreg et al., PRL (2010) Lutchyn et al., PRL (2010) Chiral p-wave SC in TI surface Mourik et al., Science (2012) Das et al., Nature Phys. (2012) InSb/ NbTiN InAs/Al (D) (DIII)

Z Possible Topological Superconductors Time-Reversal Invariant (TRI) Time-Reversal Broken (TRB) 1D 2D 3D Z2Z2 Z2Z2 Z2Z2 Z - Schnyder-Ryu-Furusaki-Ludwig (2008) Kitaev (2009) “Periodic Table” of topological invariant Kitaev model Superfluid 3 He-B phase The surface state may host Helical Majorana Fermions that are itinerant and massless E kyky EFEF New 3D topological state of matter Chiral p-wave SC in TI surface (D) (DIII)

SC in Cu x Bi 2 Se 3 Hor et al., PRL (2010) Conventional SC State in the bulk  Proximity SC E k EFEF Topological SC State in the bulk Fu & Berg, PRL (2010) E k EFEF  Helical Majorana fermions Four-component Hamiltonian of Bi 2 Se 3 with the basis (  P1 z + ,  P1 z + ,  P2 z - ,  P2 z -  ) Majorana zero mode in vortices Hosur et al., PRL (2011)

SC in Cu x Bi 2 Se 3 Hor et al., PRL (2010) Conventional SC State in the bulk  Proximity SC E k EFEF Topological SC State in the bulk Fu & Berg, PRL (2010) E k EFEF  Helical Majorana fermions Zero Resistivity Specific Heat Jump SC V.F.  70% Problem: Sample is difficult to prepare, shielding fraction is low. Majorana zero mode in vortices Hosur et al., PRL (2011)

SEM image of an actual sample (Ag particle size ~50 nm) Sasaki, Ando et al., PRL (2011) Ag particles on the surface “Soft” Point Contact Sn Cu x Bi 2 Se 3 T-dep. B-dep.

Effects of Heating and/or Critical Currents? Example of a spurious ZBCP G(V)/G n V (mV) 0 0 T 0.5 T 0.75 T 1 T Sheet et al., PRB (2004) Dip position moves with H Peak height is insensitive to H T = 0.35 K H dependence is completely different! H-dep. Reflectionless tunneling would be governed by L  ~ 1  m and suppressed with ~1 mT. Andreev bound state due to an unconventional SC state

Possible SC States in Cu x Bi 2 Se 3 Four-component Hamiltonian of Bi 2 Se 3 (  P1 z + ,  P1 z + ,  P2 z - ,  P2 z -  ) Sasaki, Ando et al., PRL (2011) All odd-parity states are topologically non-trivial and host helical Majorana fermions on the surface Fu & Berg, PRL (2010)

Unconventional SC States in Cu x Bi 2 Se 3  2 : Odd parity, full gap  4 (  3 ) : Odd parity, point node Helical Majorana A Hsieh & Fu, PRL(2012) Helical Majorana B Helical Majorana C Yamakage et al., PRB (2012) dI/dV for A dI/dV for B dI/dV Sasaki, Ando et al., PRL (2011) ZBCP due to helical Majorana fermions?

Conventional s-wave ? Controversy in Cu x Bi 2 Se 3 STM Levy et al., PRL (2013) If the bulk is BCS s-wave  Parity mixing of pair potential is anomalously enhanced by surface Dirac fermions EFEF Mizushima, Yamakage, Sato & Tanaka, PRB (2014)  Opening of an additional surface gap which is larger than the bulk gap ?

Controversy in Cu x Bi 2 Se 3 n  cm cm cm -3 Lahoud et al., PRB (2013) n = 2  cm -3 n = 4  cm -3 Levy et al., PRL (2013) Quasi-2D TSC? Mizushima et al., arXiv:

Superconducting Doped TCI

Topological Crystalline Insulator SnTe SnTe Hsieh et al., Nature Commun. (2012) PbTe SnTe : contribution from Te p-orbital SnTe PbTe Band inversion + Mirror symmetry  Nontrivial Mirror Chern number kyky  0      kxkx Z 2 invariant = 0 Tanaka, Sato, Ando et al., Nature Physics (2012)

In-doped SnTe Superconductor n = 2 – 8  cm -3 Sn 1-x In x Te Erickson et al., PRB (2009) Ferro- electric NaCl Structure Te 2- Sn 2+ /In 3+ Sato, Ando et al., PRL (2013) Topological SS is present in Sn 1-x In x Te. RhombohedralCubic Novak, Ando et al., PRB (2013)

In-doped SnTe Sn 1-x In x Te (x = 0.045) B- dep. T c = 1.2 K Faceted (001) surface T- dep meV  2  Peak suppression corresponds to H c2 Normalized ZBCP height is > 2 !! Surface Andreev Bound State due to Unconventional SC Point-Contact Spectroscopy Sasaki, Fu, Ando et al., PRL (2012)

SnTe vs. PbTe SnTe PbTe Tanaka, Ando et al., Nature Phys. (2012) T- dep. Sn 1-x In x Te Pb 1-x Tl x Te Conventional Similar FS structures, but the band parities are different. Unconventional

Possible SC States in Sn 1-x In x Te k  p Hamiltonian of SnTe around each L point  z =  1  p orbitals of Sn and Te with opposite parity ( k 3 : along  L, k 1 : along LK ) Possible Pairing Symmetry (representations of D 3d group) Parity A 1g A 1u A 2u EuEu even odd Topologically non-trivial Topological SC? k  p Hamiltonian of Bi 2 Se 3 around  point  z =  1  Se p z orbitals on the top and bottom layer Sasaki, Fu, Ando et al., PRL (2012)

Possible SC States in Sn 1-x In x Te Possible Pairing Symmetry (representations of D 3d group) Parity A 1g A 1u A 2u EuEu even odd Topologically non-trivial RhombohedralCubic Novak, Ando et al., PRB (2013) Topological SC? Sasaki, Fu, Ando et al., PRL (2012)

Majorana Zero Mode in Vortices? Cu x Bi 2 Se 3 Majorana zero mode in vortices Hosur et al., PRL (2011) Sn 1-x In x Te Multiple Majorana zero modes can coexist due to additional symmetry to protect them from hybridization If the bulk SC is conventional:

Natural Heterostructure

Natural Heterostructure PSBS [(PbSe) 5 ] n [(Bi 2 Se 3 ) 3 ] m n = 1 m = 1 m = 2 m =  (Bi 2 Se 3 ) “Quintuple Layer” Nakayama, Sato, Ando et al., PRL (2012)

Natural Heterostructure PSBS Y. Zhang, Q.K. Xue et al., Nat. Phys. (2010) m = 1 m = 2 m =  Surface states are encapsulated by the insulating PbSe layer Quasi-2D system with topological “bulk” state !! “Surface states” in every (Bi 2 Se 3 ) m units? Ultra-thin Bi 2 Se 3 Films Nakayama, Sato, Ando et al., PRL (2012)

Cu-intercalation to PSBS m = 2 Sasaki, Segawa, Ando, PRB (2014)

Nearly 100% Volume Fraction Specific-heat behavior is very different from BCS, suggesting a gap with line nodes Sasaki, Segawa, Ando PRB (2014)

Reproducibility C el (T) is reproducible in two high-volume-fraction samples. Sasaki, Segawa, Ando PRB (2014)

Magnetic-Field Dependence of C el Sasaki, Segawa, Ando PRB (2014)

Implications of Cu-PSBS Nodal Gap  Unconventional SC None of the previously known superconducting TI presented clear bulk signature of unconventional SC Sign Changing Gap + Strong Spin-Orbit Coupling  Spin-split surface Andreev bound state (i.e. Helical Majorana fermions) Quasi 2D-Fermi surface  Majoranas are on the side surface or terrace edge d-wave gap

SrPtAs

Stronger relaxation in the SC state  Appearance of spontaneous magnetic field  TRS breaking T-dependence of penetration depth  Full gap d+id (chiral d-wave) pairing ?

Thank you!