Identification of stiffness and damping properties of composites from full field measurements Theory and simulations A. Giraudeau, F. Pierron L.M.P.F.

Slides:



Advertisements
Similar presentations
Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Introduction and Overview Paris Châlons en.
Advertisements

1/38 The virtual fields method for characterizing nonlinear behavior Dr. Stéphane AVRIL.
Finite element method Among the up-to-date methods of stress state analysis, the finite element method (abbreviated as FEM below, or often as FEA for analyses.
Coulomb or Dry Friction Damping.
1/23 A. Giraudeau, F. Pierron MPSVA conference Identification of local material damping in vibrating plates using full-field measurements Alain.
CompTest 2003 : ENSAM-Châlons en Champagne, January 2003 DIRECT IDENTIFICATION OF THE DAMAGED BEHAVIOUR OF COMPOSITE MATERIALS USING THE VIRTUAL.
Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification Stéphane Roux, François Hild LMT, ENS-Cachan Atelier « Problèmes.
ICRA 2005 – Barcelona, April 2005Basilio Bona – DAUIN – Politecnico di TorinoPage 1 Identification of Industrial Robot Parameters for Advanced Model-Based.
Testing and Modeling Rate Dependent
MDOF SYSTEMS WITH DAMPING General case Saeed Ziaei Rad.
Absorptive Muffler with Shells
Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Châlons.
Identification of material properties using full field measurements on vibrating plates Mr Baoqiao GUO, Dr Alain GIRAUDEAU, Prof. Fabrice PIERRON LMPF.
1/20 The virtual fields method for elasto- plastic behaviour Dr. Stéphane AVRIL.
Team Members Duc Le Ron Pahle Thanh Nguyen Khoa Tran Sponsor Edwards Vacuum Ltd. Advisor Dr. Dave Turcic.
Time Varying Structural Behaviour of the PETS “On-Off” mechanism piston movement impact Riku Raatikainen
Modal Analysis of Rectangular Simply-Supported Functionally Graded Plates By Wes Saunders Final Report.
Viscoelastic materials
Oscillators fall CM lecture, week 3, 17.Oct.2002, Zita, TESC Review forces and energies Oscillators are everywhere Restoring force Simple harmonic motion.
Modal Analysis of Functionally Graded Rectangular Plates Wes Saunders Engineering Project Proposal.
HIGH CYCLE FATIGUE DELAMINATION MEASUREMENT AND GROWTH PREDICTION
Unit 6: Structural vibration An Introduction to Mechanical Engineering: Part Two Structural vibration Learning summary By the end of this chapter you should.
Simulations and measurements of the pre-isolator test set-up WG5 Meeting F. Ramos, A. Gaddi, H. Gerwig, N. Siegrist November 9, 2010.
Benoit BOLZON Nanobeam 2005 – Kyoto Active mechanical stabilisation LAViSta Laboratories in Annecy working on Vibration Stabilisation Catherine ADLOFF.
On the Accuracy of Modal Parameters Identified from Exponentially Windowed, Noise Contaminated Impulse Responses for a System with a Large Range of Decay.
? ? ? ? ? ?.  3 POINT BENDING TEST :  Varying loads and spans  Variables measured in the gravity center:  Deflections with vision machine  Strains.
Development of Light Weight Composite Constraining Layers for Aircraft Skin Damping RAM 7 Workshop November 4 & 5, 2014 Nick Oosting Roush Industries
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
1 SIMULATION OF VIBROACOUSTIC PROBLEM USING COUPLED FE / FE FORMULATION AND MODAL ANALYSIS Ahlem ALIA presented by Nicolas AQUELET Laboratoire de Mécanique.
Mechanical Vibrations In many mechanical systems: The motion is an oscillation with the position of static equilibrium as the center.
/171 VIBRATIONS OF A SHORT SPAN, COMPARISON BETWEEN MODELIZATION AND MEASUREMENTS PERFORMED ON A LABORATORY TEST SPAN S. Guérard (ULg) J.L. Lilien (ULg)
A PPLIED M ECHANICS Lecture 06 Slovak University of Technology Faculty of Material Science and Technology in Trnava.
This project is focused on the establishment of a novel data collection methodology that involves high resolution, full-field optical techniques. The aim.
Chapter 7. Free and Forced Response of Single-Degree-of-Freedom Linear Systems 7.1 Introduction Vibration: System oscillates about a certain equilibrium.
Progress in identification of damping: Energy-based method with incomplete and noisy data Marco Prandina University of Liverpool.
PAT328, Section 3, March 2001MAR120, Lecture 4, March 2001S14-1MAR120, Section 14, December 2001 SECTION 14 STRUCTURAL DYNAMICS.
1 MODAL ANALYSIS. 2 Tacoma Narrows Galloping Gertie.
Summary so far: Free, undamped, linear (harmonic) oscillator Free, undamped, non-linear oscillator Free, damped linear oscillator Starting today: Driven,
An Introduction to Rotorcraft Dynamics
CHAPTER - 3 FORCED OSCILLATOR Mrs. Rama Arora Assoc. Professor Deptt. Of Physics PGGCG-11 Chandigarh.
PH 421: Oscillations - do not distribute
CARE / ELAN / EUROTeV Feedback Loop on a large scale quadrupole prototype Laurent Brunetti* Jacques Lottin**
AP Physics B: Ch.10 - Elasticity and Simple Harmonic Motion Reading Assignment Cutnell and Johnson, Physics Chapter 10.
Type IV Cryomodule (T4CM) Vibration Analysis Update January 23, 2007 Mike McGee 3 rd T4CM Meeting at INFN-Milan.
MODULE 08 MULTIDEGREE OF FREEDOM SYSTEMS. 2 Structure vibrating in a given mode can be considered as the Single Degree of Freedom (SDOF) system. Structure.
1 MIDTERM EXAM REVIEW. 2 m 081.SLDASM REVIEW Excitation force 50N normal to face k=10000N/m m=6.66kg Modal damping 5%
S7-1 SECTION 7 FREQUENCY RESPONSE ANALYSIS. S7-2 INTRODUCTION TO FREQUENCY RESPONSE ANALYSIS n Frequency response analysis is a method used to compute.
Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD The principle of virtual work Paris Châlons.
1/31 Correlation and Error Localization Analytical versus Experimental Dynamics of a Large Structural Assembly Thesis presentation, Herman Marquart, 2013.
Time Varying Structural Behaviour of the PETS “On-Off” mechanism piston movement impact Riku Raatikainen
BY DAVID SEHGAL. What is DMA?  DMA is a measuring instrument which is used to determine the dynamic characteristics of materials.  It applies a dynamic.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
Date of download: 6/20/2016 Copyright © ASME. All rights reserved.
AAE 556 Aeroelasticity Lecture 23 Representing motion with complex numbers and arithmetic 1 Purdue Aeroelasticity.
THE VIRTUAL FIELDS METHOD VFM course, BSSM conference, Sept. 1st 2015 Professor Fabrice PIERRON Faculty of Engineering and the Environment Royal Society.
ANSYS Basic Concepts for ANSYS Structural Analysis
Characterizing the Dynamic Properties of Laminated Composites with Embedded Electro-Viscoelastic Materials by John Kosmatka Department of Structural Engineering.
Experimental and numerical studies on
Fluid Force Identification
Modelling and simulation of a new variable stiffness holder
Structural damping - an energy dissipation mechanism
AAE 556 Aeroelasticity Lecture 18
Part I – Basics (1) Geometric model: - interconnected model elements
PH421: Oscillations; do not distribute
LOCATION AND IDENTIFICATION OF DAMPING PARAMETERS
Tapping mode AFM: simulation and experiment
ME321 Kinematics and Dynamics of Machines
ME321 Kinematics and Dynamics of Machines
VIBRATIONS NATURAL VIBRATIONS DAMPED VIBRATIONS FORCED VIBRATIONS.
Chapter 15: Oscillatory motion
Presentation transcript:

Identification of stiffness and damping properties of composites from full field measurements Theory and simulations A. Giraudeau, F. Pierron L.M.P.F. (JE 2381) ENSAM Châlons en Champagne CompTest 2003

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Scheme 1. Introduction 2. Presentation of the method 3. Virtual Fields 4. Application 5. Simulation & Validation 6. Conclusion

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Introduction Prediction of vibrating behaviour Material properties - Stiffness - Damping Identification : Experimental Modal Analysis Modal properties Anisotropic materials Heterogenous tests Number of parameters Anisotropic material Isotropic material Vibrating plates

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Presentation of the method  Extension of the Virtual Fields Method (Grédiac 1989)  3 Points : Excitation set up Full field measurements Application of the Principle of Virtual Works

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / In air Excitation set up Plate clamped in one pointSine driven movement Inertial excitation In vacuum Out of plane vibrations

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Full field measurements Optical methods : - no contact - fields of out of plane slopes mm In airIn vacuum Aluminium plate Examples : Speckle Interferometry measurements

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Principle of Virtual Works Virtual works : Internal forces External forces Inertial forces Choice of the Virtuals Fields (Elastic) (Dissipative) (Clamping)(Acceleration) u* : virtual displacement  * : virtual strain tensor Virtual Fields

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Actual fields of displacements x yO z  Harmonic driven movement :  Absolute response : Amplitude Phase Mode k

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / F. E. Simulation Model : Isotropic and viscoelastic material mm Rectangular plate 2048 shell elements Freq Hz Mode Freq Hz mm -80 In phase  /2 lag Responses Real Imaginary

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Actual fields of displacements x y O z  Harmonic driven movement :  Absolute response :  Absolute response in complex notation :

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Choice of the Virtuals Fields  Kinematically admissible : Actual fields : Virtual fields : Complex Virtual Fields

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Virtual works of external forces (VWEF) VWEF Clamping : F u* VWEF

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Virtual works of internal forces (VWIF)  Thin plate : Love Kirchoff theory  Isotropic viscoelastic material + -

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Virtual works of inertial forces (VWIF) Acceleration :

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Summary Virtual Works Principle : VWIF + VWEF = VWAC  at any time 3 equations Eq1 (no time dep.) Eq2 (cos(2  t)) Eq3 (sin(2  t))  for any combination of u and u r * i * 6 equations : 4 independants equations

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Identification  Interest for 2 equations : with : Measured Choosen  Objective function : Unknown

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Simulation Isotropic material F E model : Rectangular plate 2048 shell elements Proportional damping :  Virtual fields : Identification

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Excitation at resonances Simulation – Results (1) Proportional damping : -5  =10 Noise level (%p-p) 27 Hz 71 Hz 150 Hz 171 Hz Frequencies Relative errors (%) Dxx Dxy 

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Excitation at resonances Simulation – Results (2) Proportional damping : -3  =10 Noise level (%p-p) 27 Hz 71 Hz 150 Hz 171 Hz Frequencies Relative errors (%) Dxx Dxy 

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Simulation – Results (3) Proportional damping : -3  =10 Excitation at NON resonance Noise level (%p-p) 50 Hz 100 Hz 150 Hz 200 Hz Frequencies Relative errors (%) DxxDxy 

A. Giraudeau, F. Pierron - CompTest Châlons / 01 / Conclusion  Simultaneous identification of stiffness and damping  Material damping  Plate of any shape  Resonant or non resonant response  Set of specimens  Excitation on a range of frequencies Identification of frequency dependance of damping Anisotropic plates