Sampling Strategies for PRMs modified from slides of T.V.N. Sri Ram.

Slides:



Advertisements
Similar presentations
Complete Motion Planning
Advertisements

Probabilistic Roadmaps. The complexity of the robot’s free space is overwhelming.
Sampling Techniques for Probabilistic Roadmap Planners
By Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, Mark H. Overmars Emre Dirican
Visibility Graphs May Shmuel Wimer Bar-Ilan Univ., Eng. Faculty Technion, EE Faculty.
NUS CS5247 The Gaussian Sampling Strategy for Probalistic Roadmap Planners Valdrie Boor, Mark H. Overmars, A. Frank van der Stappen, 1999 Wai.
Sampling From the Medial Axis Presented by Rahul Biswas April 23, 2003 CS326A: Motion Planning.
Sampling Strategies By David Johnson. Probabilistic Roadmaps (PRM) [Kavraki, Svetska, Latombe, Overmars, 1996] start configuration goal configuration.
The Voronoi Diagram David Johnson. Voronoi Diagram Creates a roadmap that maximizes clearance –Can be difficult to compute –We saw an approximation in.
Probabilistic Roadmap
A Comparative Study of Probabilistic Roadmap Planners Roland Geraerts Mark Overmars.
Probabilistic Roadmap Methods (PRMs)
Probabilistic Roadmaps Sujay Bhattacharjee Carnegie Mellon University.
Iterative Relaxation of Constraints (IRC) Can’t solve originalCan solve relaxed PRMs sample randomly but… start goal C-obst difficult to sample points.
Randomized Kinodynamics Motion Planning with Moving Obstacles David Hsu, Robert Kindel, Jean-Claude Latombe, Stephen Rock.
Randomized Motion Planning for Car-like Robots with C-PRM Guang Song and Nancy M. Amato Department of Computer Science Texas A&M University College Station,
Sampling and Connection Strategies for PRM Planners Jean-Claude Latombe Computer Science Department Stanford University.
Multi-Robot Motion Planning Jur van den Berg. Outline Recap: Configuration Space for Single Robot Multiple Robots: Problem Definition Multiple Robots:
1 Last lecture  Configuration Space Free-Space and C-Space Obstacles Minkowski Sums.
Deadlock-Free and Collision- Free Coordination of Two Robot Manipulators Patrick A. O’Donnell and Tomás Lozano- Pérez by Guha Jayachandran Guha Jayachandran.
Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints. Timothy Bretl Presented by Patrick Mihelich and Salik Syed.
Sampling Strategies for Narrow Passages Presented by Rahul Biswas April 21, 2003 CS326A: Motion Planning.
Motion Planning. Basic Topology Definitions  Open set / closed set  Boundary point / interior point / closure  Continuous function  Parametric curve.
“Visibility-based Probabilistic Roadmaps for Motion Planning” Siméon, Laumond, Nissoux Presentation by: Eric Ng CS326A: Paper Review Spring 2003.
Star-Shaped Roadmaps Gokul Varadhan. Prior Work: Motion Planning Complete planning –Guaranteed to find a path if one exists –Report non-existence otherwise.
Finding Narrow Passages with Probabilistic Roadmaps: The Small-Step Retraction Method Presented by: Deborah Meduna and Michael Vitus by: Saha, Latombe,
1 Single Robot Motion Planning - II Liang-Jun Zhang COMP Sep 24, 2008.
1 Last lecture  Path planning for a moving Visibility graph Cell decomposition Potential field  Geometric preliminaries Implementing geometric primitives.
Planning Paths for Elastic Objects Under Manipulation Constraints Florent Lamiraux Lydia E. Kavraki Rice University Presented by: Michael Adams.
CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Probabilistic Roadmaps: Sampling Strategies.
1 Finding “Narrow Passages” with Probabilistic Roadmaps: The Small-Step Retraction Method Mitul Saha and Jean-Claude Latombe Research supported by NSF,
Sampling Strategies for Narrow Passages Presented by Irena Pashchenko CS326A, Winter 2004.
Providing Haptic ‘Hints’ to Automatic Motion Planners Providing Haptic ‘Hints’ to Automatic Motion Planners Burchan Bayazit Joint Work With Nancy Amato.
Interactive Navigation in Complex Environments Using Path Planning Salomon et al.(2003) University of North Carolina Presented by Mohammed Irfan Rafiq.
1 Path Planning in Expansive C-Spaces D. HsuJ. –C. LatombeR. Motwani Prepared for CS326A, Spring 2003 By Xiaoshan (Shan) Pan.
Sampling Strategies for Probabilistic Roadmaps Random Sampling for capturing the connectivity of the C-space:
NUS CS 5247 David Hsu1 Last lecture  Multiple-query PRM  Lazy PRM (single-query PRM)
Randomized Motion Planning for Car-like Robots with C-PRM Guang Song, Nancy M. Amato Department of Computer Science Texas A&M University College Station,
A General Framework for Sampling on the Medial Axis of the Free Space Jyh-Ming Lien, Shawna Thomas, Nancy Amato {neilien,
CS 326 A: Motion Planning robotics.stanford.edu/~latombe/cs326/2003/index.htm Configuration Space – Basic Path-Planning Methods.
Robot Motion Planning Bug 2 Probabilistic Roadmaps Bug 2 Probabilistic Roadmaps.
Chapter 5: Path Planning Hadi Moradi. Motivation Need to choose a path for the end effector that avoids collisions and singularities Collisions are easy.
Sampling and Connection Strategies for PRM Planners Jean-Claude Latombe Computer Science Department Stanford University Abridged and Modified Version (D.H.)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Constraint-Based Motion Planning using Voronoi Diagrams Maxim Garber and Ming C. Lin Department of Computer.
Workspace-based Connectivity Oracle An Adaptive Sampling Strategy for PRM Planning Hanna Kurniawati and David Hsu Presented by Nicolas Lee and Stephen.
The University of North Carolina at CHAPEL HILL A Simple Path Non-Existence Algorithm using C-obstacle Query Liang-Jun Zhang.
CS 326A: Motion Planning Probabilistic Roadmaps: Sampling and Connection Strategies.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Kavraki, Svestka, Latombe, Overmars 1996 Presented by Chris Allocco.
Providing Haptic ‘Hints’ to Automatic Motion Planners Providing Haptic ‘Hints’ to Automatic Motion Planners Burchan Bayazit Joint Work With Nancy Amato.
Providing Haptic ‘Hints’ to Automatic Motion Planners Providing Haptic ‘Hints’ to Automatic Motion Planners by Burchan Bayazit Department of Computer Science.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Lydia E. Kavraki Petr Švetka Jean-Claude Latombe Mark H. Overmars Presented.
Presentation for the course : Advanced Robotics Behdad Soleimani 9 March 2009.
A Randomized Approach to Robot Path Planning Based on Lazy Evaluation Robert Bohlin, Lydia E. Kavraki (2001) Presented by: Robbie Paolini.
Deterministic Sampling Methods for Spheres and SO(3) Anna Yershova Steven M. LaValle Dept. of Computer Science University of Illinois Urbana, IL, USA.
The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty Changsi An You-Wei Cheah.
© Manfred Huber Autonomous Robots Robot Path Planning.
Randomized Motion Planning: From Intelligent CAD to Digital Actors to Protein Folding Nancy M. Amato Department of Computer Science Texas A&M University.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe, M. Overmars.
Narrow Passage Problem in PRM Amirhossein Habibian Robotic Lab, University of Tehran Advanced Robotic Presentation.
Deterministic Sampling Methods for Spheres and SO(3) Anna Yershova Steven M. LaValle Dept. of Computer Science University of Illinois Urbana, IL, USA.
Introduction to Motion Planning
Project by: Qi-Xing & Samir Menon. Motion Planning for the Human Hand Generate Hand Skeleton Define Configuration Space Sample Configuration Space for.
NUS CS 5247 David Hsu Sampling Narrow Passages. NUS CS 5247 David Hsu2 Narrow passages.
Filtering Sampling Strategies: Gaussian Sampling and Bridge Test Valerie Boor, Mark H. Overmars and A. Frank van der Stappen Presented by Qi-xing Huang.
Autonomous Robots Robot Path Planning (2) © Manfred Huber 2008.
Artificial Intelligence Lab
Last lecture Configuration Space Free-Space and C-Space Obstacles
UOBPRM: A Uniformly Distributed Obstacle-Based PRM
Sampling and Connection Strategies for Probabilistic Roadmaps
Configuration Space of an Articulated Robot
Presentation transcript:

Sampling Strategies for PRMs modified from slides of T.V.N. Sri Ram

Basic PRM algorithm

Issue Narrow passages

OBPRMs A randomized roadmap method for path and manipulation planning (Amato,Wu ICRA’96) OBPRM: An obstacle-based PRM for 3D workspaces (Amato,Bayazit, Dale, Jones and Vallejo)

Roadmap candidate points chosen on C- obstacle surfaces

Basic Ideas Algorithm Given

Finding points on C-objects 1.Determine a point o (the origin) inside s 2.Select m rays with origin o and directions uniformly distributed in C-space 3.For each ray identified above, use binary search to determine a point on s

Issues Selection of o in C- obstacle is crucial –To obtain uniform distribution of samples on the surface, would like to place origin somewhere near the center of C-object. – Still skewed objects would present a problem

Issues (contd) Paths touch C-obstacle

Main Advantage Useful in manipulation planning where the robot has to move along contact surfaces Useful when C-space is very cluttered.

Results

Bridge Test The Bridge Test for Sampling Narrow Passages with Probabilistic Roadmap Planners (Hsu, Jiang, Reif, Sun ICRA’03)

Main Idea Accept mid-point as a new node in roadmap graph if two end-points are in collision and mid- point is free Constrain the length of the bridge: Favourable to build these in narrow passages

Algorithm

Contribution over previous Obstacle–Based Methods Avoids sampling “uninteresting” obstacle boundaries. Local Approach: Does not need to “capture” the C-obstacle in any sense Complementary to the Uniform Sampling Approach

Issues Deciding the probability density (π B )around a point P, which has been chosen as first end- point. Combining Bridge Builder and Uniform Sampling –π =(1-w). π B +w.π v –π B : probability density induced by the Bridge Builder –π v : probability density induced by uniform sampling

Results NmilNclear Ncon

Medial-Axis Based PRM MAPRM: A Probabilistic Roadmap Planner with Sampling on the Medial Axis of the Free Space (Wilmarth, Amato, Stiller ICRA’99)

Definitions

Main Ideas Beneficial to have samples on the medial axis; however, computation of medial axis itself is costly. Retraction : takes nodes from free and obstacle space onto the medial axis w/o explicit computation of the medial axis. This method increases the number of nodes found in a narrow corridor –independent of the volume of corridor –Depends on obstacles bounding it

Approach for Free-Space Find x o (nearest boundary point) for each point x in Free Space. Search along the ray x o x and find arbitrarily close points x a and x b s.t. x o is the nearest point on the boundary for x a but not x b. Called canonical retraction map

Extended Retraction Map Doing only for Free-Space => Only more clearance. Doesn’t increase samples in Narrow Passages Retract points that fall in C obstacle also. Retract points in the direction of the nearest boundary point

Results for 2D case LEFT: Helpful: obstacle-space that retracts to narrow passage is large RIGHT: Not Helpful: Obstacle-space seeping into medial axis in narrow corridor is very low

MAPRM for 3D rigid bodies

Example 2

Example 3

Main Results Demonstrates an approach to use medial axis based ideas with random sampling Advantages: –Useful in cluttered environments. Where a great volume of obstacle space is adjacent to narrow spaces –Above Environment: Bisection technique for evaluating point on medial axis???

Limitations Additional primitive: “Nearest Contact Configuration”. For larger (complex) problems, this time may become significant…. Extension to higher dimensions difficult. Which direction to search for nearest contact?