Code parameters optimization & DTL Tank 1 error studies Maud Baylac, Emmanuel Froidefond Presented by JM De Conto LPSC-Grenoble HIPPI yearly meeting, Oxford,

Slides:



Advertisements
Similar presentations
MEBT Design Considerations The beam energy in the MEBT is sufficiently low for the space charge forces to have a considerable impact on the beam dynamics.
Advertisements

LINAC4 and 3 MeV test stand at CERN
Emittance dilution due to misalignment of quads and cavities of ILC main linac revised K.Kubo For beam energy 250 GeV,
R. Miyamoto, Beam Physics Design of MEBT, ESS AD Retreat 1 Beam Physics Design of MEBT Ryoichi Miyamoto (ESS) November 29th, 2012 ESS AD Retreat On behalf.
ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011.
RFQ CAD Model Tolerance Studies Simon Jolly 14 th December 2011.
M. LindroosNUFACT06 School Accelerator Physics Transverse motion Mats Lindroos.
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
Space Charge meeting – CERN – 09/10/2014
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
ESS DTL beam commissioning
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes C. Zannini E. Metral, G. Rumolo, B. Salvant.
Field and Phase Error Studies in Normal Conducting Structures LLRF and Beam Dynamics in Hadron Linacs – EuCARD2 Workshop Ciprian Plostinar
MICE pencil beam raster scan simulation study Andreas Jansson.
FFAG-ERIT R&D 06/11/06 Kota Okabe (Kyoto Univ.) for FFAG-DDS group.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Particle dynamics in electron FFAG Shinji Machida KEK FFAG04, October 13-16, 2004.
Theoretical studies of IBS in the SPS F. Antoniou, H. Bartosik, T. Bohl, Y.Papaphilippou MSWG – LIU meeting, 1/10/2013.
LCLS-II Magnet Error Sensitivities. Sensitivities of dipole magnets, from injector output (95 MeV) to SXR undulator input (4 GeV), where each plotted.
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Status of the Front End Test Stand April Infrastructure R8 refurbished Laser lab under construction Vacuum system for first section delivered Stands.
M.E. Biagini, M. Boscolo, T. Demma (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Status of Multi-particle simulation of INFN.
The CLIC decelerator Instrumentation issues – a first look E. Adli, CERN AB/ABP / UiO October 17, 2007.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
July 19-22, 2006, Vancouver KIRTI RANJAN1 ILC Curved Linac Simulation Kirti Ranjan, Francois Ostiguy, Nikolay Solyak Fermilab + Peter Tenenbaum (PT) SLAC.
ADAM meeting Geneve, SCDTL study for ERHA C. Ronsivalle, L. Picardi.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Update on injection studies of LHC beams from Linac4 V. Forte (BE/ABP-HSC) Acknowledgements: J. Abelleira, C. Bracco, E. Benedetto, S. Hancock, M. Kowalska.
ILC luminosity optimization in the presence of the detector solenoid and anti-DID Reine Versteegen PhD Student CEA Saclay, Irfu/SACM International Workshop.
Andreas Jansson, "Quadrupole Pick-ups", LHC BI-Review, November 19-20, Quadrupole Pick-ups  What is a quadrupole pick-up?  PS pick-ups and experimental.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
3D codes: TraFiC4 and CSRtrack Torsten Limberg DESY Zeuthen 2003.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Particle Diffusion in FFT Space Charge Method J. Holmes May, 2013.
Main Linac Tolerances What do they mean? ILC-GDE meeting Beijing Kiyoshi Kubo 1.Introduction, review of old studies 2.Assumed “static” errors.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Mark Rayner – Analysis SessionCM25, 4 November Beam characterization by the TOFs Mark Rayner The University of Oxford MICE CM25.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
Marcel Schuh CERN-BE-RF-LR CH-1211 Genève 23, Switzerland 3rd SPL Collaboration Meeting at CERN on November 11-13, 2009 Higher.
Michael Röhrs On-crest slice emittance measurements Michael Roehrs.
Intra-Beam scattering studies for CLIC damping rings A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou *
A.Saini, K.Ranjan, N.Solyak, S.Mishra, V.Yakovlev on the behalf of our team Feb. 8, 2011 Study of failure effects of elements in beam transport line &
Warm linac simulations (DTL) and errors analysis M. Comunian F. Grespan.
LCLS-II Injector layout design and study Feng Zhou 8/19/2015.
R. Miyamoto, MEBT Lattice Optimization, ESS AD Beam Physics Internal Review 1 MEBT Lattice Optimization Ryoichi Miyamoto (ESS) For Beam Physics Group,
1 Error study of non-scaling FFAG 10 to 20 GeV muon ring Shinji Machida CCLRC/RAL/ASTeC 26 July, ffag/machida_ ppt.
Linac4 DTL Beam Dynamics 1Jean-Baptiste Lallement – Mini-workshop on DTL design - 13/09/2011 Mini-workshop on DTL design – 13 September 2011 JB Lallement,
1 & 2 JUNE 2015 – LLRF – BEAM DYNAMICS WORKSHOP URIOT Didier What is taken into account in simulations LLRF – Beam dynamics Workshop.
Choppers Comparison of three schemes of choppers is made 2.5 MeV and 2.1 MeV beam energies are considered Presented by Boris Shteynas May,
DTL: Basic Considerations M. Comunian & F. Grespan Thanks to J. Stovall, for the help!
Review of Alignment Tolerances for LCLS-II SC Linac Arun Saini, N. Solyak Fermilab 27 th April 2016, LCLS-II Accelerator Physics Meeting.
Linac4 Beam Characteristics
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
HIPPI yearly meeting, sep28-sep
Progress activities in short bunch compressors
SuperB e+/e- main linac and diagnostics studies
ICFA Mini-Workshop, IHEP, 2017
MEBT1&2 design study for C-ADS
Physics Design on Injector I
Studies on orbit corrections
Simulations for the LCLS Photo-Injector C
COMB beam: TSTEP simulations up to THz station
DTL M. Comunian M. Eshraqi.
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Simon Jolly UKNFIC Meeting 25th April 2008
Presentation transcript:

Code parameters optimization & DTL Tank 1 error studies Maud Baylac, Emmanuel Froidefond Presented by JM De Conto LPSC-Grenoble HIPPI yearly meeting, Oxford, September, 2005

Overview Goal, recall TW inputs Optimization of code parameters Nb runs Nb calculations per βλ Nb particles Space charge routine: 2d vs 3d Mesh size Error study Individual sensitivity: longitudinal & transverse Effect of input distribution Global errors, loss Set of tolerances

Goal For us: learn how to use TraceWin Study sensitivity of DTL to quadrupole and field errors Determine set of tolerances for tank 1 for quadrupole alignment quadrupole gradient klystron field amplitude and phase gap field amplitude

TraceWin inputs Several inputs: evolutive DTL design Input distribution: mainly type -32 (Gaussian) file Worse case scenario & Same for all studies 2 types of simulations: Sensitivity: one type of error at a time (e.g.: δ x ) Global error effect: all types of errors at once Each error generated randomly & uniformly in [–max; +max] For all cases, transport to the end of the DTL

Number of runs Study convergence with nb of runs 1000 runs DTL 2004

Nb space charge calculations per βλ Inactive on DTL cells Default for DTL cells: was 1 space charge calc. per cell (ie: 20 calc. per betatron oscil.) modified to up to 3 calc. per cell (depending on cell length)

Number of particles Most simulations use 50 kparticles (1000 runs) –Fast calculation –Minimal loss: 20 ppm A few global error runs use 10 6 particles (5000 runs) –250 to 400 CPU hours –Minimal loss: 1 ppm

Space charge routines

Space charge routines comparison 2d vs 3d disagreement can be very large Not understood Example: 1 run with 1.5 mm x displacement of the 1 st quad with PICNIR & PICNIC PICNIR (2d) PICNIC (3d) DTL 2004

large for large emittance growth if X ≠ Y (our case) increases with beam current much more pronounced for FFDD vs FODO for transverse phenomenon Agreement for longitudinal errors (unexplained) Space charge routines disagreement  Use 3d PICNIC with optimized mesh size

Optimization of mesh size Gausup 3d (PICNIC) 2d (PICNIR) Mismatch beam (40% in x/y/z) at DTL input to generate large emittance growth

7x7 mesh size through DTL Gausup 3d (PICNIC) 2d (PICNIR) Matched beam through DTL: validation of mesh size

DTL with all errors 7x7 mesh statistically compatible with high resolution mesh & keeps calculation time reasonable

Sensitivities to longitudinal errors Gaussian distribution, 50 kpart, 1000 runs Error type Max error amplitude (mm or deg) ± rms (%) ± rms (%) ± rms (%) Longitudinal errors  E klys /E klys = ± 1%  φ klys = ±1deg  E gap /E gap = ± 1% 0.0 ± ± ± 0.7 Very little effect for all 3 longitudinal errors combined DTL 2005

Sensitivities to transverse errors Gaussian distribution, 50 kpart, 1000 runs Error type Max error amplitude (mm or deg) ± rms (%) proba (%) ± rms (%) proba (%) ± rms (%) proba (%) Displ x±0.1 mm 1.0 ± 0.8 <1% : 60 <5% : ± 0.1 <1% : 100 <5% : ± 0.5 <1% : 76 <5% : 100 Rota x (pitch) ±0.5 deg 0.01 ± 0.01 <1% : 100 <5% : 100 1E-3±3E-3 <1% : 100 <5% : ± 0.01 <1% : 100 <5% : 100 Rota z (roll) ±0.2 deg 0.8 ± 0.6 <1% : 76 <5% : ± 0.6 <1% : 77 <5% : ± 0.02 <1% : 100 <5% : 100  G/G ±0.5% 0.1 ± 0.2 <1% : 100 <5% : ± 0.3 <1% : 100 <5% : ± 0.07 <1% : 100 <5% : 100 Some emittance growth No loss Energy jitter: a few 10-4 Phase jitter: a few DTL 2005

Longitudinal rotation (roll) Emittance growth similar in x & y (coupling) Emittance growth quadratic with roll angle Confirmed by theoretical calculations No longitudinal emittance growth DTL 2005

Effect of input distribution Design & Distribution ± rms (%) proba (%) ± rms (%) proba (%) ± rms (%) proba (%) RMS x (mm) & RMS x’ (mrad) RMS y (mm) & RMS y’ (mrad) Losses 2005 Gaussian 2.0 ± 1.0 <1% : 13 <5% : ± 1.0 <1% : 15 <5% : ± 0.8 <1% : 28 <5% : & & 0.8 Loss < 2E KV 1.5 ± 1.0 <1% : 35 <5% : ± 1.0 <1% : 37 <5% : ± 0.7 <1% : 57 <5% : & & 0.9 Loss < 2E-5 Gaussian distribution, 50 kpart, 1000 runs Simple shift (30-50%), no broadening DTL 2005

Effect of input distribution: transverse errors DTL 2005

Global effect with high statistics: transverse & longitudinal errors and  φ/φ=±1 deg  E/E klystron =±1%  E/E gap =±1% Design & errors ± rms (%) proba (%) ± rms (%) proba (%) ± rms (%) proba (%)  E ± rms (keV)  φ ± rms (deg) Losses 2005 Trans. 2.0 ± 1.0 <1% : 13.8 <5% : ± 1.0 <1% : 14.2 <5% : ± 0.8 <1% : 26.5 <5% : ± ± 0.01Loss < 1E Trans.+ longi. 2.0 ± 1.2 <1% : 20.4 <5% : ± 1.2 <1% : 20.3 <5% : ± 1.1 <1% : 20.1 <5% : ± ± 0.15Loss < 1E particles, 4291 runs, Gaussian input, 250 to 400 CPU hours for each run δ x/y = ±0.1 mm Φ x/y = ± 0.5 deg Φ z = ± 0.2 deg  G/G = ±0.5% Some broadening in longitudinal direction

Main trends of quadrupole alignment Transverse displacement (symmetric x/y ) transverse & longitudinal emit. growth 2005 design: ~ 1% for ±0.1 mm Transverse rotation (pitch & yaw): no effect Longitudinal rotation (roll): transverse emit. growth 2005 design: ~ 0.8% for ±0.2 deg Emittance growth with 2005 design vs 2004 design: slightly worse with errors on all tanks Individual sensitivities roughly add up

DTL tank 1 tolerances Tolerances agreed upon by DTL task force: quadrupoles: longitudinal displacements: δ x,y = ±0.1 mm longitudinal rotations: Φ x,y = ±0.5 deg transverse rotations: Φ z = ±0.2 deg gradient:  G/G = ±0.5% accelerating field: klystron field amplitude:  E klys /E klys = ±1% klystron field phase:  φ klys = ±1deg gap field amplitude:  E gap /E gap = ±1%

Conclusions Sensitive parameters: transverse displacement & roll Little effect due to longitudinal errors (longitudinal shift cannot be tested with TW) With present tolerance budget, beam quality sees little degradation through DTL: Emittance growth x, y and z < 5% in 98% of runs Loss < RMS width in x and y < 1.2 mm RMS width in x’ and y’ < 1.1 mrad Multipolar component contribution: waiting for TW debug Code benchmarking to validate results

Acknowledgements Didier URIOT (CEA/DSM) for discussions and multiple debugs Nicolas PICHOFF (CEA/DAM) for discussions regarding space charge calculations Edgar Sargsyan, Alessandra Lombardi and Frank Gerigk (CERN) for inputs and discussions