Sebastian Thrun Carnegie Mellon & Stanford Wolfram Burgard University of Freiburg and Dieter Fox University of Washington Probabilistic Algorithms for.

Slides:



Advertisements
Similar presentations
Mapping with Known Poses
Advertisements

Probabilistic Robotics
Probabilistic Robotics
Probabilistic Robotics
Probabilistic Robotics SLAM. 2 Given: The robot’s controls Observations of nearby features Estimate: Map of features Path of the robot The SLAM Problem.
Monte Carlo Localization for Mobile Robots Karan M. Gupta 03/10/2004
IR Lab, 16th Oct 2007 Zeyn Saigol
Probabilistic Robotics
Markov Localization & Bayes Filtering 1 with Kalman Filters Discrete Filters Particle Filters Slides adapted from Thrun et al., Probabilistic Robotics.
Simultaneous Localization and Mapping
1 Slides for the book: Probabilistic Robotics Authors: Sebastian Thrun Wolfram Burgard Dieter Fox Publisher: MIT Press, Web site for the book & more.
SA-1 Probabilistic Robotics Tutorial AAAI-2000 Sebastian Thrun Computer Science and Robotics Carnegie Mellon University.
Bayesian Robot Programming & Probabilistic Robotics Pavel Petrovič Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics
Recursive Bayes Filtering Advanced AI Wolfram Burgard.
Recursive Bayes Filtering Advanced AI
Localization David Johnson cs6370. Basic Problem Go from thisto this.
Probabilistic Robotics: Kalman Filters
1.Examples of using probabilistic ideas in robotics 2.Reverend Bayes and review of probabilistic ideas 3.Introduction to Bayesian AI 4.Simple example.
Sebastian Thrun Carnegie Mellon & Stanford Wolfram Burgard University of Freiburg and Dieter Fox University of Washington Probabilistic Algorithms for.
Robotic Mapping: A Survey Sebastian Thrun, 2002 Presentation by David Black-Schaffer and Kristof Richmond.
Sebastian Thrun Carnegie Mellon University Statistical Learning in Robotics State-of-the-Art, Challenges and Opportunities.
© sebastian thrun, CMU, CS226 Statistical Techniques In Robotics Monte Carlo Localization Sebastian Thrun (Instructor) and Josh Bao (TA)
Probabilistic Robotics
Sebastian Thrun Carnegie Mellon University University of Pittsburgh Particle Filters In Robotics or: How the World Became To Be One Big Bayes Network.
SLAM: Simultaneous Localization and Mapping: Part I Chang Young Kim These slides are based on: Probabilistic Robotics, S. Thrun, W. Burgard, D. Fox, MIT.
Probabilistic Robotics
Robust Monte Carlo Localization for Mobile Robots
Monte Carlo Localization
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
A Probabilistic Approach to Collaborative Multi-robot Localization Dieter Fox, Wolfram Burgard, Hannes Kruppa, Sebastin Thrun Presented by Rajkumar Parthasarathy.
SA-1 Probabilistic Robotics Mapping with Known Poses.
Bayesian Filtering for Location Estimation D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello Presented by: Honggang Zhang.
SLAM: Simultaneous Localization and Mapping: Part II BY TIM BAILEY AND HUGH DURRANT-WHYTE Presented by Chang Young Kim These slides are based on: Probabilistic.
HCI / CprE / ComS 575: Computational Perception
ROBOT MAPPING AND EKF SLAM
Bayesian Filtering for Robot Localization
Itamar Kahn, Thomas Lin, Yuval Mazor
Markov Localization & Bayes Filtering
Localization and Mapping (3)
/09/dji-phantom-crashes-into- canadian-lake/
9-1 SA-1 Probabilistic Robotics: SLAM = Simultaneous Localization and Mapping Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti,
From Bayesian Filtering to Particle Filters Dieter Fox University of Washington Joint work with W. Burgard, F. Dellaert, C. Kwok, S. Thrun.
SA-1 Mapping with Known Poses Ch 4.2 and Ch 9. 2 Why Mapping? Learning maps is one of the fundamental problems in mobile robotics Maps allow robots to.
Probabilistic Robotics: Monte Carlo Localization
Mapping and Localization with RFID Technology Matthai Philipose, Kenneth P Fishkin, Dieter Fox, Dirk Hahnel, Wolfram Burgard Presenter: Aniket Shah.
Probabilistic Robotics Bayes Filter Implementations Gaussian filters.
1 Robot Environment Interaction Environment perception provides information about the environment’s state, and it tends to increase the robot’s knowledge.
Young Ki Baik, Computer Vision Lab.
Mobile Robot Localization (ch. 7)
Robot Mapping Short Introduction to Particle Filters and Monte Carlo Localization.
City College of New York 1 Dr. Jizhong Xiao Department of Electrical Engineering City College of New York Advanced Mobile Robotics.
P ARTICLE F ILTER L OCALIZATION Mohammad Shahab Ahmad Salam AlRefai.
CSE-473 Mobile Robot Mapping. Mapping with Raw Odometry.
CSE-473 Project 2 Monte Carlo Localization. Localization as state estimation.
Probabilistic Robotics
HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev
Sebastian Thrun Michael Montemerlo
Monte Carlo Localization for Mobile Robots Frank Dellaert 1, Dieter Fox 2, Wolfram Burgard 3, Sebastian Thrun 4 1 Georgia Institute of Technology 2 University.
10-1 Probabilistic Robotics: FastSLAM Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann,
SLAM Techniques -Venkata satya jayanth Vuddagiri 1.
Mobile Robotics. Fundamental Idea: Robot Pose 2D world (floor plan) 3 DOF Very simple model—the difficulty is in autonomy.
Robótica Móvil CC5316 Clase 16: SLAM
Probabilistic Robotics
Probabilistic Robotics: Historgam Localization
CARNEGIE MELLON UNIVERSITY
Introduction to Robot Mapping
Jose-Luis Blanco, Javier González, Juan-Antonio Fernández-Madrigal
Probabilistic Robotics
Probabilistic Robotics Bayes Filter Implementations FastSLAM
Presentation transcript:

Sebastian Thrun Carnegie Mellon & Stanford Wolfram Burgard University of Freiburg and Dieter Fox University of Washington Probabilistic Algorithms for Mobile Robot Mapping LEP: Adapted, combining partially with Thrun’s Tutorial

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Based on the paper A Real-Time Algorithm for Mobile Robot Mapping With Applications to Multi-Robot and 3D Mapping Best paper award at 2000 IEEE International Conference on Robotics and Automation (~1,100 submissions) Sponsored by DARPA (TMR-J.Blitch, MARS-D.Gage, MICA-S.Heise) and NSF (ITR(2), CAREER-E.Glinert, IIS-V.Lumelsky) Other contributors: Yufeng Liu, Rosemary Emery, Deepayan Charkrabarti, Frank Dellaert, Michael Montemerlo, Reid Simmons, Hugh Durrant-Whyte, Somajyoti Majnuder, Nick Roy, Joelle Pineau, …

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems 3D Mapping with EM Real Time Hybrid Expectation Maximization SLAM (Kalman filters) Motivation

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Museum Tour-Guide Robots With: Greg Armstrong, Michael Beetz, Maren Benewitz, Wolfram Burgard, Armin Cremers, Frank Dellaert, Dieter Fox, Dirk Haenel, Chuck Rosenberg, Nicholas Roy, Jamie Schulte, Dirk Schulz

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Nursebot Initiative With: Greg Armstrong, Greg Baltus, Jacqueline Dunbar- Jacob, Jennifer Goetz, Sara Kiesler, Judith Matthews, Colleen McCarthy, Michael Montemerlo, Joelle Pineau, Martha Pollack, Nicholas Roy, Jamie Schulte

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Localization Problem  Estimate robot’s coordinates s=(x,y,  ) from sensor data Position tracking (error bounded) Global localization (unbounded error) Kidnapping (recovery from failure) Ingemar Cox (1991): “Using sensory information to locate the robot in its environment is the most fundamental problem to provide a mobile robot with autonomous capabilities.” see also [Borenstein et al, 96]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping: The Problem n Concurrent Mapping and Localization (CML) n Simultaneous Localization and Mapping (SLAM)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping: The Problem n Continuous variables n High-dimensional (eg, 1,000,000+ dimensions) n Multiple sources of noise n Simulation not acceptable

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Milestone Approaches Mataric 1990 Kuipers et al 1991 Elfes/Moravec 1986 Lu/Milios/Gutmann 1997

Sebastian Thrun, Carnegie Mellon, IJCAI D Mapping Konolige et al, 2001Teller et al, 2000 Moravec et al, 2000

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Take-Home Message Mapping is the holy grail in mobile robotics. Every state-of-the-art mapping algorithm is probabilistic.

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Robots are Inherently Uncertain n Uncertainty arises from four major factors: –Environment stochastic, unpredictable –Robot stochastic –Sensor limited, noisy –Models inaccurate

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Probabilistic Robotics

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Probabilistic Robotics Key idea: Explicit representation of uncertainty (using the calculus of probability theory) n Perception = state estimation n Action = utility optimization

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Advantages of Probabilistic Paradigm n Can accommodate inaccurate models n Can accommodate imperfect sensors n Robust in real-world applications n Best known approach to many hard robotics problems

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Pitfalls n Computationally demanding n False assumptions n Approximate

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems 3D Mapping with EM Real Time Hybrid Expectation Maximization Motivation SLAM (Kalman filters)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Localization Problem  Estimate robot’s coordinates s=(x,y,  ) from sensor data Position tracking (error bounded) Global localization (unbounded error) Kidnapping (recovery from failure) Ingemar Cox (1991): “Using sensory information to locate the robot in its environment is the most fundamental problem to provide a mobile robot with autonomous capabilities.” see also [Borenstein et al, 96]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 s p(s)p(s) Probabilistic Localization [Simmons/Koenig 95] [Kaelbling et al 96] [Burgard et al 96]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Bayes Filters Bayes Markov [Kalman 60, Rabiner 85] d = data o = observation a = action t = time s = state Markov

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Markov Assumption used above Knowledge of current state renders past, future independent: “Static World Assumption” “Independent Noise Assumption”

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Bayes Filters are Familiar to AI! n Kalman filters n Hidden Markov Models n Dynamic Bayes networks n Partially Observable Markov Decision Processes (POMDPs)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Localization With Bayes Filters map m s’ a p(s|a,s’,m) a s’ laser datap(o|s,m) observation o

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Kalman filter [Schiele et al. 94], [Weiß et al. 94], [Borenstein 96], [Gutmann et al. 96, 98], [Arras 98] Piecewise constant (metric, topological) [Nourbakhsh et al. 95], [Simmons et al. 95], [Kaelbling et al. 96], [Burgard et al. 96], [Konolige et al. 99] Variable resolution (eg, trees) [Burgard et al. 98] Multi-hypothesis [Weckesser et al. 98], [Jensfelt et al. 99] What is the Right Representation?

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Idea: Represent Belief Through Samples Particle filters [Doucet 98, deFreitas 98] Condensation algorithm [Isard/Blake 98] Monte Carlo localization [Fox/Dellaert/Burgard/Thrun 99]

Monte Carlo Localization (MCL)

MCL: Importance Sampling

MCL: Robot Motion motion

MCL: Importance Sampling

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Particle Filters draw s (i) t  1 from b ( s t  1 ) draw s (i) t from p ( s t | s (i) t  1,a t  1,m ) Represents b ( s t ) by set of weighted particles {s (i) t,w (i) t } Importance factor for s (i) t :

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Monte Carlo Localization

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Performance Comparison Monte Carlo localizationMarkov localization (grids)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Monte Carlo Localization n Approximate Bayes Estimation/Filtering –Full posterior estimation –Converges in O(1/  #samples) [Tanner’93] –Robust: multiple hypothesis with degree of belief –Efficient: focuses computation where needed –Any-time: by varying number of samples –Easy to implement

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Pitfall: The World is not Markov! [Fox et al 1998] Distance filters:

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Probabilistic Localization: Lessons Learned n Probabilistic Localization = Bayes filters n Particle filters: Approximate posterior by random samples

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Problem: Concurrent Mapping and Localization 70 m

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Concurrent Mapping and Localization n Is a chicken-and-egg problem –Mapping with known poses is “simple” –Localization with known map is “simple” –But in combination, the problem is hard! n Today’s best solutions are all probabilistic!

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Posterior estimation with known poses: Occupancy grids Posterior estimation with known poses: Occupancy grids Maximum likelihood: ML* Maximum likelihood: ML* Maximum likelihood: EM Maximum likelihood: EM Posterior estimation: EKF (SLAM) Posterior estimation: EKF (SLAM) Mapping: Outline

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping as Posterior Estimation Assume static map [Smith, Self, Cheeseman 90, Chatila et al 91, Durrant-Whyte et al 92-00, Leonard et al ]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Kalman Filters n N-dimensional Gaussian n Can handle hundreds of dimensions

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Underwater Mapping By: Louis L. Whitcomb, Johns Hopkins University

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Underwater Mapping - Example “Autonomous Underwater Vehicle Navigation,” John Leonard et al, 1998

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Underwater Mapping with SLAM Courtesy of Hugh Durrant-Whyte, Univ of Sydney

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping with Extended Kalman Filters Courtesy of [Leonard et al 1998]

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Key Assumption Inverse sensor model p(s t |o t,m) must be Gaussian. n Main problem: Data association Posterior multi-modal  Undistinguishable features  In practice: Extract small set of highly distinguishable features from sensor data Discard all other data If ambiguous, take best guess for landmark identity Posterior uni-modal Distinguishable features

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping Algorithms - Comparison SLAM (Kalman) OutputPosterior ConvergenceStrong Local minimaNo Real timeYes Odom. ErrorUnbounded Sensor NoiseGaussian # Features10 3 Feature uniqYes Raw dataNo

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Posterior estimation with known poses: Occupancy grids Posterior estimation with known poses: Occupancy grids Maximum likelihood: ML* Maximum likelihood: ML* Maximum likelihood: EM Maximum likelihood: EM Posterior estimation: EKF (SLAM) Posterior estimation: EKF (SLAM) Mapping: Outline

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 M-Step: Mapping with known posesE-Step: Localization [Dempster et al, 77] [Thrun et al, 1998] [Shatkay/Kaelbling 1997] Mapping with Expectation Maximization

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 map(1) Uncertainty Models for Motion

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 CMU’s Wean Hall (80 x 25 meters) 15 landmarks 16 landmarks 17 landmarks27 landmarks

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 EM Mapping, Example (width 45 m)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping Algorithms - Comparison SLAM (Kalman) EM OutputPosteriorML/MAP ConvergenceStrongWeak? Local minimaNoYes Real timeYesNo Odom. ErrorUnbounded Sensor NoiseGaussianAny # Features10 3  Feature uniqYesNo Raw dataNoYes

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Posterior estimation with known poses: Occupancy grids Posterior estimation with known poses: Occupancy grids Maximum likelihood: ML* Maximum likelihood: ML* Maximum likelihood: EM Maximum likelihood: EM Posterior estimation: EKF (SLAM) Posterior estimation: EKF (SLAM) Mapping: Outline

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Goal EM: data association Not real-time Kalman filters: real-time No data association ? ?

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Real-Time Approximation (ICRA paper)   Incremental ML

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Incremental ML: Not A Good Idea path robot mismatch

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 ML* Mapping, Online Idea: step-wise maximum likelihood 2. Posterior: [Gutmann/Konolige 00, Thrun et al. 00] 1. Incremental ML estimate:

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping with Poor Odometry map and exploration path raw data DARPA Urban Robot

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping Without(!) Odometry mapraw data (no odometry)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Localization in Multi-Robot Mapping

Sebastian Thrun, Carnegie Mellon, IJCAI D Mapping two laser range finders

Sebastian Thrun, Carnegie Mellon, IJCAI D Structure Mapping (Real-Time)

Sebastian Thrun, Carnegie Mellon, IJCAI D Texture Mapping raw image sequencepanoramic camera

Sebastian Thrun, Carnegie Mellon, IJCAI D Texture Mapping

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Underwater Mapping (with University of Sydney) With: Hugh Durrant-Whyte, Somajyoti Majunder, Marc de Battista, Steve Scheding

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping Algorithms - Comparison SLAM (Kalman) EMML* OutputPosteriorML/MAP ConvergenceStrongWeak?No Local minimaNoYes Real timeYesNoYes Odom. ErrorUnbounded Sensor NoiseGaussianAny # Features10 3  Feature uniqYesNo Raw dataNoYes

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Posterior estimation with known poses: Occupancy grids Posterior estimation with known poses: Occupancy grids Maximum likelihood: ML* Maximum likelihood: ML* Maximum likelihood: EM Maximum likelihood: EM Posterior estimation: EKF (SLAM) Posterior estimation: EKF (SLAM) Mapping: Outline

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Occupancy Grids: From scans to maps

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Occupancy Grid Maps Assumptions: poses known, occupancy binary, independent [Elfes/Moravec 88] Assume

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Example CAD map occupancy grid map The Tech Museum, San Jose

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping Algorithms - Comparison SLAM (Kalman) EMML*Occupan. Grids OutputPosteriorML/MAP Posterior ConvergenceStrongWeak?NoStrong Local minimaNoYes No Real timeYesNoYes Odom. ErrorUnbounded None Sensor NoiseGaussianAny # Features10 3  Feature uniqYesNo Raw dataNoYes

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Mapping: Lessons Learned n Concurrent mapping and localization: hard robotics problem n Best known algorithms are probabilistic 1.EKF/SLAM: Full posterior estimation, but restrictive assumptions (data association) 2.EM: Maximum Likelihood, solves data association 3.ML*: less robust but online 4.Occupancy grids: Binary Bayes filter, assumes known poses (= much easier)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 The Obvious Next Step EM for object mapping EM for concurrent localization

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Motivation SLAM (Kalman filters) Expectation Maximization Real Time Hybrid 3D Mapping with EM Open Problems

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Take-Home Message Mapping is the holy grail in mobile robotics. Every state-of-the-art mapping algorithm is probabilistic.

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems n 2D Indoor mapping and exploration n 3D mapping (real-time, multi-robot) n Object mapping (desks, chairs, doors, …) n Outdoors, underwater, planetary n Dynamic environments (people, retail stores) n Full posterior with data association (real-time, optimal)

Sebastian Thrun, Carnegie Mellon, IJCAI-2001 Open Problems, con’t n Mapping, localization n Control/Planning under uncertainty n Integration of symbolic making n Human robot interaction Literature Pointers: n “Robotic Mapping” at n “Probabilistic Robotics” AI Magazine 21(4)