kHz-driven high-harmonic generation from overdense plasmas

Slides:



Advertisements
Similar presentations
Laser Accelerators: The Technology of the Future (They Always Have Been and They Always Will Be ?) Cockcroft Institute Laser Lectures April 2008 Graeme.
Advertisements

Vulcan Front End OPCPA System
Relativistic Surface High Harmonic Generation
Femtosecond lasers István Robel
Petawatt Field Synthesizer
Observation of the relativistic cross-phase modulation in a high intensity laser plasma interaction Shouyuan Chen, Matt Rever, Ping Zhang, Wolfgang Theobald,
Soft X-ray light sources Light Sources Ulrike Frühling Bad Honnef 2014.
High-Contrast Ultrabroadband Frontend Source for High Intensity Few-Cycle Lasers P. Ramirez 1, D. Papadopoulos 1,2, A. Pellegrina 1,2, F. Druon 1, P. Georges.
22. Ultrashort x-ray pulses: High-Harmonic Generation
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
S. Varma, Y.-H. Chen, and H. M. Milchberg Institute for Research in Electronics and Applied Physics Dept. of Electrical and Computer Engineering Dept.
Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied.
KeV HHG and Sub femtosecond K-shell excitation. ( using IR (2.1  m) Radiation Source ) Gilad Marcus The Department of Applied Physics, The Hebrew University,
Generation of short pulses
Femtosecond laser pulse Attosecond pulse train Generation and Application of Attosecond pulse trains GenerationApplication Measure and control electron.
Ultrafast Spectroscopy
Lecture 3: Laser Wake Field Acceleration (LWFA)
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
J. Fils for the PHELIX team GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany Sept Speyer EMMI Workshop The PHELIX High Energy.
Time-Bandwidth Products getting the average power of ultrafast DPSS lasers from hundreds of mW to tens of Watts by Dr. Thomas Ruchti CERN, April 2006 SESAM.
Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.
Single-shot characterization of sub-15fs pulses with 50dB dynamic range A. Moulet 1, S.Grabielle 1, N.Forget 1, C.Cornaggia 2, O.Gobert 2 and T.Oksenhendler.
Extreme Light Infrastructure Workshop – Bucharest - September, 17, 2008 Cosmin Blaga The Dawn of Attophysics - First Steps Towards A Tabletop Attosecond.
Laser driven particle acceleration
Discussion of measurement methods for femtosecond and attosecond pulses.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
DS3-DS4 Joint 1 st Task Meeting, Saclay 16 th -17 th May 2005 Matter under extremes conditions Femtosecond Laser Servers Laboratoire Francis Perrin SPAM.
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
IPBSM status and plan ATF project meeting M.Oroku.
Physics and Applications of High Brightness Beams:
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Multi-GeV laser driven proton acceleration in the high current regime Laser-driven acceleration is living a major revolution (PW era)… …but will ever be.
Development and application of plasma- waveguide based soft x-ray lasers Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central.
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Imperial College London Imperial College XUV Attosecond Beamline: progress and results to date Charles Haworth Laser Consortium Imperial College London.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
R. Kupfer, B. Barmashenko and I. Bar
Relativistically oscillating plasma surfaces : High harmonic generation and ultrafast plasma dynamics Brendan Dromey ICUIL 26 Sept – 1 Oct Watkins Glen.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
MPQ Acknowledgments for Collaboration: G. Mourou, X. M. Zhang,Y. M. Shin, D. Farinella, T. Saeki, D. Farinella, N. Naumova, K. Nakajima, S. Bulanov, A.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
ULTRAFAST PHENOMENA – LINEAR AND NONLINEAR To present nonlinear optics as successive approximations of the semi-classical interaction between light and.
Attosecond Optical Science V R. The key idea; F=ma Classically an atom’s own electron, driven by a strong electric field can interact with its parent.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Free Electron Laser driven by Laser Plasma Acceleration FACET-II Science Opportunities Workshop, October 15 th 2015 Jeroen van Tilborg, Carl Schroeder,
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
GRK-1203 Workshop Oelde Watching a laser pulse at work
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
High Harmonic Generation from overdense plasma
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
SPARCLAB: PW-class Ti:Sa laser+SPARC
SUPA, Department of Physics, University of Strathclyde,
Laboratoire d’Optique Appliquée
High Harmonics from Overdense Plasma Surfaces
Preliminary results on SE1 beamline
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
Stabilizing the Carrier-Envelope Phase of the Kansas Light Source
Short focal length target area: X-ray & ion sources and applications
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
Presentation transcript:

kHz-driven high-harmonic generation from overdense plasmas A. Borot, A. Malvache, X. Chen, R. Lopez-Martens (LOA) J.-P. Geindre, P. Audebert (LULI) G. Mourou (ILE) ICUIL 2010, Watkins Glenn, 29 september 2010 http://loa.ensta.fr/ UMR 7639

Attosecond pulses from plasma mirrors Ilaser > 1015 W/cm2 @ 800 nm ne=100’s of nc ne= nc nc = me0wL2/e2 nc = 1.7 1021 cm-3 @ 800 nm ≈ l/10 Optically-polished Solid target Phase-locked harmonics Plasma plume Thaury et al, Nature Physics 3 (2007) Tarasevitch et al, PRL 98 (2007)   Dromey et al, Nature Physics 2 (2006) Nomura et al., Nat. Phys. 5, 124 (2009) Nonlinear medium : Solid density plasma n ~ 1023 cm-3 No intensity limit : (beyond 1020 W/cm2)

Different intensity regimes P Plasma frequency: Plastic target, Thaury et al, , Nature Physics 3 (2007)

PIC simulation : 80 nC, sharp gradient, 6.1017W/cm2 Relativistic oscillating mirror (ROM) ~ Doppler effect Bulanov et al, Phys. Plasmas 1 (1994) Lichters et al, Phys. Plasmas 3 (1996) Baeva et al, Phys. Rev. E 74 (2006) plasma Quere et al, PRL 96 (2006) Coherent wake emission (CWE) ~ plasma oscillations plasma

Tsakiris et al, New J. Phys. 8 (2006) Dream beam Laser : ~ 1 Joule, 5fs Tsakiris et al, New J. Phys. 8 (2006) Duration: 5fs Energy: few Joules CEP control I ~ 1020 W/cm2 Temporal contrast: >10-10 Rate > 10Hz 10-4 10-3 10-2 h

Albert et al., Optics Letters 2000 Can we do this at 1kHz? Deformable Mirror Target Low f parabaloid Tight focusing 1 mJ, 5 fs 1 kHz Albert et al., Optics Letters 2000 Size of focus ~ 2 “lambda cube” regime Wavefront correction Peak intensity ~ 1019 W/cm2

Tough requirements… For the laser: Few-cycle > mJ energy CEP control High temporal contrast High spatial quality For the target: kHz refreshment sub-mm positioning target lifetime

Laser system Femtopower Compact Pro CEP + DazzlerTM Home made booster amplifier Canova et al., Opt. Lett. 34, (2009) 3mJ, 28fs, 1kHz Dazzler CEP control Forget et al., Opt. Lett. 34, (2009) Hollow fiber compressor 1.5mJ, 4.2fs, CEP<300 mrad Chen et al., Appl. Phys. B 99, (2010)

Hollow fiber = excellent spatial quality 1.8 x 1.7 mm2 focus f/1.7 paraboloid (70% energy in focus) …after 6m propagation On-target intensity ~ 3 x 1018 W/cm2

~ 6 million consecutive shots! kHz target Surface jitter < 1 m translation rotation vacuum chamber translation rotation ~ 6 million consecutive shots! target: 14 cm BK7 ~ 50 mm between shots Target stabilization

Reference interferogram Target stabilization Reference interferogram Mach-Zender interferometer Reference position Target Camera Beam Splitters Frequency stabilised He-Ne laser

Target stabilization Fringe tilt Reference Vertical tilt Target Camera Beam Splitters Frequency stabilised He-Ne laser

Fringe spacing increases Target stabilization Fringe spacing increases Reference horizontal tilt Target Camera Beam Splitters Frequency stabilised He-Ne laser

Target stabilization Fringe pattern shifts Reference Depth change Camera Beam Splitters Frequency stabilised He-Ne laser

“on-line” stabilization underway mm depth (bearing precision) 10 mrad in orientation Current: Manual feedback (picomotors): < 100 nm < mrad few 100 Hz Next: Fast, automated feedback (piezo actuators):

Experimental setup laser Vacuum chamber HHG spectrum 50-shot average Beam expander f/1.7 and f/6 parabola Spherical grating 1200 lines/mm MCP Phosphor CCD HHG spectrum 50-shot average BK7 target

HHG divergence vs laser focus Imax = 8 x 1016 W/cm² Div = 56 mrad 4 x 4.1 mm2 f/6 MCP image Imax = 8 x 1017 W/cm² Div = 186 mrad 1.6 x 1.7 mm2 f/2

Full spectrum at 8x1017 W/cm2 (26fs)

Relative harmonic efficiencies I = 8x1017 W/cm² I = 8x1016 W/cm² exponential decay for CWE harmonics

Harmonic beam divergence I = 8x1016 W/cm² I = 8x1017 W/cm² Expected decrease of divergence with increasing harmonic order

Laser chirp dependence I = 8x1016 W/cm² Expected laser chirp dependence Quéré et al, Phys. Rev. Lett. 100, 095004 (2008)

First “few-cycle” results HHG spectrum: 28 fs ~ 3x1017 W/cm2

First “few-cycle” results HHG spectrum: 5 fs ~ 3x1017 W/cm2

CEP dependence CEP rms stability: > 300 mrad Relative CEP (deg) 100 9 10 11 12 13 Harmonic order 100 200 300 Relative CEP (deg)

Future work reduce CEP jitter (< 200 mrad)  attosecond dynamics of CWE upgrade pulse energy up to 5mJ XPW contrast filter: from 108 to >1010  Observe ROM harmonics Lower harmonics : « lambda cube » regime (Naumova et al., Phys. Rev. Lett. 2004)

“Salle Noire” Lab at LOA