東京大学におけるMSGCの開発 東京大学 二河久子 藤田薫、高田夕佳、高橋浩之 2007/01/27 佐賀大学.

Slides:



Advertisements
Similar presentations
MUSIC - Past, Presence, and Future of a detector concept Walter F.J. Müller, GSI Bormio 2004.
Advertisements

GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
CMS GEM Workshop III, April 20, 2012
1 Sep. 19, 2006Changguo Lu, Princeton University Induced signal in RPC, Configuration of the double gap RPC and Grouping of the strips Changguo Lu Princeton.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Status of MRPC-TOF Wang Yi Department of Engineering Physics Tsinghua University, Beijing, China 1.
*Shuji Maeo 1,2, Takayuki Yanagida 1, Yuui Yokota 1 and Akira Yoshikawa 1,3 1 Division of Physical Process Design, Institute of Multidisciplinary Research.
Proportional Counters
Photon Counting Sensors for Future Missions
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
10 B-based Multi-Grid Detectors as an alternative to 3 He In-beam test on the IN6 ToF spectrometer 10 B-based Multi-Grid Detectors as an alternative to.
E. Norbeck U. IowaFast Gas Detector APR 05 Tampa1 Small Fast Gas Detector for High-Energy Electrons E. Norbeck, J.E. Olson, and Y. Onel University of Iowa.
The Performance of Glass-GEM Takeshi Fujiwara, Yuki Mitsuya, Hiroyuki Takahashi, Mitsuru Uesaka The University of Tokyo, JAPAN MPGD 2013 July 2 nd 2013.
Components of Optical Instruments, Cont… Lecture 8.
1 Microstrip PSD detectors C. Fermon, V. Wintenberger, G. Francinet, F. Ott, Laboratoire Léon Brillouin CEA/CNRS Saclay.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
Linear Collider TPC R&D in Canada Bob Carnegie, Madhu Dixit, Dean Karlen, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer, Alasdair Rankin,
Development of Tracking Detector with GEM Kunihiro Fujita RCNP, Osaka Univ. Yasuhiro Sakemi CYRIC, Tohoku Univ. Masaharu Nomachi Dep. of Phys., Osaka Univ.
M. McConnell1, J. R. Macri, J. M. Ryan, K. Larson, L. -A. Hamel, G
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Chevron / Zigzag Pad Designs for Gas Trackers
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
1 TRD-prototype test at KEK-FTBL 11/29/07~12/6 Univ. of Tsukuba Hiroki Yokoyama The TRD prototype is borrowed from GSI group (thanks Anton).
A gas scintillation proportional counter for thermal neutron scattering measurements D.Raspino, N.J.Rhodes, E.M.Schooneveld (ISIS-STFC), I.Defendi, M.Jurkovic,
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
Ionization Detectors Basic operation
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
5 th RD51 meeting (WG1) 25 May 2009 Atsuhiko Ochi ( Kobe University )
Novel Semi-Transparent Optical Position Sensors for high-precision alignment monitoring applications Sandra Horvat, F.Bauer, V.Danielyan, H.Kroha Max-Planck-Institute.
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 神戸大学 越智 敦彦、桂華.
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
1/18 01/26/2007MPGD Workshop in Saga (Yorito Yamaguchi, CNS, Univ. of Tokyo) 東大 CNS における GEM の基本動 作特性の研究 Measurement of basic properties of GEM at CNS,
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
The GEM activities at Tsinghua University Zhigang Xiao 1, Yan Huang 1, Rensheng Wang 1, Haiyan Gao 1,2 1 Department of Physics, Tsinghua University 2 Dept.
JRA-1 ISRSI Consortium Meeting Perugia, INAF/IASF (BO,PA)
R. Pani Department of Experimental Medicine and Pathology University of Rome La Sapienza-Italy. Flat Panel PMT: advances in position sensitive photodetection.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
J-PARC での高輝度 ビームに向けた GEM トラッカーの 開発 小沢 恭一郎 ( 東大・理 ) KEK 測定器開発室 Supported by 科研費.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
16 Sept PSD 7 Liverpool 1 MHSP with position detection capability MHSP with position detection capability H. Natal da Luz a,b, J.F.C.A. Veloso a,b,
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Development of μ-PIC with resistive electrodes using sputtered carbon Kobe Univ.,Tokyo ICEPP A F.Yamane, A.Ochi, Y.Homma S.Yamauchi, N.Nagasaka, H.Hasegawa,
A novel two-dimensional microstrip sensor for charge division readout D. Bassignana, M. Lozano, G. Pellegrini CNM-IMB (CSIC) M. Fernández, R. Jaramillo,
A novel two-dimensional microstrip sensor with charge division readout M. Fernández, R. Jaramillo, F.J. Muñoz, I. Vila IFCA (CSIC-UC) D. Bassignana, M.
SAMURAI Si Detector M. Kurokawa a), H. Baba a), T. Gunji b), H. Hamagaki b), S. Hayashi b),T. Motobayashi a), H. Murakami a), A. Taketani a), M. Tanaka.
V.Aulchenko 1,2, L.Shekhtman 1,2, B.Tolochko 3,2, V.Zhulanov 1,2 Budker Institute of Nuclear Physics, , Novosibirsk, Russia Novosibirsk State University,
Maintenance and improvement of beam-line detectors for the BigRIPS fragment separator Yuki Sato RIKEN Nishina Center Detector team.
GEM TPC Resolution from Charge Dispersion*
A General Purpose Charge Readout Chip for TPC Applications
Wide Dynamic range readout preamplifier for Silicon Strip Sensor
CMS muon detectors and muon system performance
Development of Hard X-ray Detector with GEM
News on second coordinate readout
Conceptual design of TOF and beam test results
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
The MPPC Study for the GLD Calorimeter Readout
Gain measurements of Chromium GEM foils
Presentation transcript:

東京大学におけるMSGCの開発 東京大学 二河久子 藤田薫、高田夕佳、高橋浩之 2007/01/27 佐賀大学

Outline Introduction 1) Global-Local Grouping 1-Dimensional MSGC 2) Global-Local Grouping 2-Dimensional MSGC 3) Fine-pitch MSGC Conclusions

Introduction Multi-grid-type MSGC(M-MSGC) is being developed for  1)Large sensitive area (1~1.5m 2 cost  2)High position cost ~0.6mm for normal size: 10cm 2 1.5mm~2mm for large area, ~0.6mm  3)High counting rate ~20kHz/module, ~1MHz possible with 4 anode readout Why MSGC? - Uniformity of plate pattern = realize uniform gas gain - Low cost - We can develop MSGC design and its plate by ourselves with Electron Beam lithography (ADVANTEST F5112) at our univ. 1)&2): especially for Neutron scattering experiment (it needs quantitative data : detection of the position)

0) Multi-grid type MSGC Cathode strip anode strip grid electrode M-MSGC Multi Wire Proportional counter Microfablication technology photolithography EB lithography ⇒ High-counting Rate 100 ~ 400  m Anode pitch ⇒ High position resolution MSGC Discharges due to surface streamers Problem favorable electric field with intermediate grid electrodes MSGC A G1 G2 G3 G4 C 400  m M-MSGC Narrow pitch of electrodes

M-MSGC:Original design The longest MSGC: 64cm Global Local Method High position resolution 1-3mm FWHM Low cost 700mm 2 designs are arranged on one plate. Signals are read from cathodes : no necessity of decoupling condensers 1)Global-Local Grouping 1-Dimensional MSGC For Large sensitive

Conceptual drawing:top view Local Anode Global What is Global-Local Grouping Method? 1)Global-Local Grouping 1-Dimensional MSGC Conventional M-MSGC ⇒ Position = Global:2 and Local1 (top view)

“Position resolution” and “Signal to noise ratio” Conventional type Anode Cathode L L L Cathode Local Cathode Global L’ S/N worsens, but L becomes smaller!! Signal to Noise ratio Position resolution L/ L/20 20 L/400 + Local with GLG method 1)Global-Local Grouping 1-Dimensional MSGC

Signal to Noise ratio Position resolution (mm) Comparison of GLG and usual charge division Advantage of use GLG For total length 640mm Simple Charge division GLG method 100 10 1mm 10mm 1)Global-Local Grouping 1-Dimensional MSGC

FWHM : Global: 13mm, Local: 1.6mm 1)Global-Local Grouping 1-Dimensional MSGC 14 keV PF Ar(70%)+CH 4 (30%) @1 atm Gas gain 3500 Position resolution for 14 keV X-rays

Beam Scan Results for 32cm along Gas gain )Global-Local Grouping 1-Dimensional MSGC

X-ray Beam scan result 1)Global-Local Grouping 1-Dimensional MSGC

Multi layer 64mm 2 0.8mm pitch Position resolution : 0.8mm Split anode and GLG Method for cathode simpler electronics (1/5) : Read out :36 channels + amps ⇒ 0.8mm pitch, 2D individual readout (usually as the same design,160 channels + amps are needed for individual readout) Concept & Design :University of Tokyo Plate manufacture : TOSHIBA 2) Global-Local Grouping 2-Dimensional MSGC For High position resolution

Source: Sr-90 2) Global-Local Grouping 2-Dimensional MSGC Quick reports with test plate (G2 and G4 are open.) Bias G1 and G3 and

Global position Local position X-ray Beam scan result (anode) Position resolution ~0.8mm 2) Global-Local Grouping 2-Dimensional MSGC

3) Fine-pitch MSGC For High Counting Rate Previous work (i) Linear response ~ 10 8 cps/mm 2 Dynamic range measured in a charge-integrating mode Gas Gain: 100

Dynamic range measurement using a beam parallel to anode strip 3) Fine-pitch MSGC Previous work (ii) Linear response ~ cps/mm 2 3 digits improved Gas Gain: 100 For higher counting rate, fine-pitch M-MSGC is considered

Fine pitch MSGC can enhance the counting rate characteristics Design : Fine-pitch < Electron mean pass in gas 300~400  m Towards Fine-pitch M-MSGC side view Plate without grids 3) Fine-pitch MSGC radiation Charge Anode Glass substrate Anode Glass substrate Coarse pitch Fine pitch cathode radiation Charge

50 um pitch : Nano strip Gas Counter (NSGC ) Grid 2 50 um Anode Grid1 Cathode Metal Chromium Anode pitch 50 um Anode width 800 nm Gap Anode-Grid 6um others 5 um Effective area 2mm x 20 mm 3) Fine-pitch MSGC Gaps 6,5,5,5,6,=32 Width 3,3,5,2,3,3=18

3) Fine-pitch MSGC Measured using 16 CH Preamp U-Tokyo ASIC Time[sec] Amplitude [a.u.] Charge-sensitive preamplifier output signal

Anode Cathode 1  sec Time[sec] Amplitude [a.u.] 3) Fine-pitch MSGC

FWHM 15% Ar escape peak Channel number 3) Fine-pitch MSGC Pulse height spectrum for 8keV X-rays Counts/Channel 8 keV X-rays φ100  PF Ar(70%)+CH 4 (30%) @1 atm Gas gain 280

Conclusions 1) Global-Local Grouping 1-Dimensional MSGC Confirmed basic characteristics.Next step, build up several plates array alignment. 2) Global-Local Grouping 2-Dimensional MSGC Under manufacturing of the Plate… 3) Fine-pitch MSGC We have made a very fine-pitch M-MSGC as the first trial of nano-strip gas counter Fabricated detector was successfully operated at a gas gain 280