Limitations for Quantum PCPs Fernando G.S.L. Brandão University College London Based on joint work arXiv:1310.0017 with Aram Harrow MIT Simons Institute,

Slides:



Advertisements
Similar presentations
Parallel Repetition of Two Prover Games Ran Raz Weizmann Institute and IAS.
Advertisements

Local Hamiltonians in Quantum Computation Funding: Slovak Research and Development Agency, contract No. APVV , European Project QAP 2004-IST- FETPI-15848,
Limitations for Quantum PCPs Fernando G.S.L. Brandão University College London Based on joint work arXiv: with Aram Harrow MIT CEQIP 2014.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Quantum Computing MAS 725 Hartmut Klauck NTU
AM With Multiple Merlins Scott Aaronson MIT Scott Aaronson (MIT) Dana Moshkovitz (MIT) Russell Impagliazzo (UCSD)
Quantum Information, Entanglement, and Many-Body Physics Fernando G.S.L. Brandão University College London Caltech, January 2014.
Quantum Information Theory as a Proof Technique Fernando G.S.L. Brandão ETH Zürich With B. Barak (MSR), M. Christandl (ETH), A. Harrow (MIT), J. Kelner.
Monogamy of Quantum Entanglement Fernando G.S.L. Brandão ETH Zürich Princeton EE Department, March 2013.
The Unique Games Conjecture with Entangled Provers is False Julia Kempe Tel Aviv University Oded Regev Tel Aviv University Ben Toner CWI, Amsterdam.
Quantum Data Hiding Challenges and Opportunities Fernando G.S.L. Brandão Universidade Federal de Minas Gerais, Brazil Based on joint work with M. Christandl,
Two Query PCP with Subconstant Error Dana Moshkovitz Princeton University and The Institute for Advanced Study Ran Raz The Weizmann Institute 1.
Derandomized parallel repetition theorems for free games Ronen Shaltiel, University of Haifa.
Probabilistically Checkable Proofs (and inapproximability) Irit Dinur, Weizmann open day, May 1 st 2009.
Probabilistically Checkable Proofs Madhu Sudan MIT CSAIL 09/23/20091Probabilistic Checking of Proofs TexPoint fonts used in EMF. Read the TexPoint manual.
Product-State Approximations to Quantum Groundstates Fernando G.S.L. Brandão Imperial -> UCL Based on joint work with A. Harrow Paris, April 2013.
Product-state approximations to quantum ground states Fernando Brandão (UCL) Aram Harrow (MIT) arXiv:
Exponential Decay of Correlations Implies Area Law Fernando G.S.L. Brandão ETH Zürich Based on joint work with Michał Horodecki Arxiv: COOGEE.
Introduction to PCP and Hardness of Approximation Dana Moshkovitz Princeton University and The Institute for Advanced Study 1.
1/17 Optimal Long Test with One Free Bit Nikhil Bansal (IBM) Subhash Khot (NYU)
Quantum locally-testable codes Dorit Aharonov Lior Eldar Hebrew University in Jerusalem.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Two Query PCP with Sub-constant Error Dana Moshkovitz Princeton University Ran Raz Weizmann Institute 1.
New Variants of the Quantum de Finetti Theorem with Applications Fernando G.S.L. Brandão ETH Zürich Based on joint work with Aram Harrow Arxiv:
Stronger Subadditivity Fernando G.S.L. Brandão University College London -> Microsoft Research Coogee 2015 based on arXiv: with Aram Harrow Jonathan.
Semidefinite Programming
1 Dorit Aharonov School of Computer Science and Engineering The Hebrew University, Jerusalem, Israel Israel Quantum Hamiltonian Complexity Complexity What.
Complexity 1 Hardness of Approximation. Complexity 2 Introduction Objectives: –To show several approximation problems are NP-hard Overview: –Reminder:
Complexity ©D.Moshkovitz 1 Paths On the Reasonability of Finding Paths in Graphs.
1 Quantum NP Dorit Aharonov & Tomer Naveh Presented by Alex Rapaport.
1 Slides by Asaf Shapira & Michael Lewin & Boaz Klartag & Oded Schwartz. Adapted from things beyond us.
Quantum Hamiltonian Complexity Fernando G.S.L. Brandão ETH Zürich Based on joint work with A. Harrow and M. Horodecki Quo Vadis Quantum Physics, Natal.
Area Laws for Entanglement Fernando G.S.L. Brandão University College London joint work with Michal Horodecki arXiv: arXiv:1406.XXXX Stanford.
Quantum Information Theory in Quantum Hamiltonian Complexity Aram Harrow (MIT) Simons Institute 16 Jan 2014.
Dana Moshkovitz, MIT Joint work with Subhash Khot, NYU.
Information-Theoretic Techniques in Many-Body Physics Day 1 Fernando G.S.L. Brandão UCL Based on joint work with A. Harrow and M. Horodecki New Mathematical.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Entanglement Area Law (from Heat Capacity)
Exponential Decay of Correlations Implies Area Law Fernando G.S.L. Brandão ETH Zürich Based on joint work with Michał Horodecki Arxiv: Q+ Hangout,
Products of Functions, Graphs, Games & Problems Irit Dinur Weizmann.
Faithful Squashed Entanglement Fernando G.S.L. Brandão 1 Matthias Christandl 2 Jon Yard 3 1. Universidade Federal de Minas Gerais, Brazil 2. ETH Zürich,
Monogamy of non- signalling correlations Aram Harrow (MIT) Simons Institute, 27 Feb 2014 based on joint work with Fernando Brandão (UCL) arXiv:
Thermalization and Quantum Information Fernando G.S.L. Brandão University College London New Perspectives on Thermalization, Aspen 2014 partially based.
Merlin-Arthur Games and Stoquastic Hamiltonians B.M. Terhal, IBM Research based on work with Bravyi, Bessen, DiVincenzo & Oliveira. quant-ph/ &
Quantum Information Theory: Present Status and Future Directions Julia Kempe CNRS & LRI, Univ. de Paris-Sud, Orsay, France Newton Institute, Cambridge,
De Finetti theorems and PCP conjectures Aram Harrow (MIT) DAMTP, 26 Mar 2013 based on arXiv: arXiv:13??.???? joint work with Fernando Brandão.
Barriers in Hamiltonian Complexity Umesh V. Vazirani U.C. Berkeley.
1 Dorit Aharonov Hebrew Univ. & UC Berkeley Adiabatic Quantum Computation.
The Complexity of Quantum Entanglement Fernando G.S.L. Brandão ETH Zürich Based on joint work with M. Christandl and J. Yard Journees Deferation de Reserche.
The complexity of poly-gapped Hamiltonians (Extending Valiant-Vazirani Theorem to the probabilistic and quantum settings) Fernando G.S.L. Brandão joint.
1/19 Minimizing weighted completion time with precedence constraints Nikhil Bansal (IBM) Subhash Khot (NYU)
A Monomial matrix formalism to describe quantum many-body states Maarten Van den Nest Max Planck Institute for Quantum Optics Montreal, October 19 th 2011.
A generalization of quantum Stein’s Lemma Fernando G.S.L. Brandão and Martin B. Plenio Tohoku University, 13/09/2008.
The question Can we generate provable random numbers? …. ?
CS6045: Advanced Algorithms NP Completeness. NP-Completeness Some problems are intractable: as they grow large, we are unable to solve them in reasonable.
Is entanglement “robust”? Lior Eldar MIT / CTP Joint work with Aram Harrow.
Boaz Barak (MSR New England) Fernando G.S.L. Brandão (Universidade Federal de Minas Gerais) Aram W. Harrow (University of Washington) Jonathan Kelner (MIT)
A counterexample for the graph area law conjecture Dorit Aharonov Aram Harrow Zeph Landau Daniel Nagaj Mario Szegedy Umesh Vazirani arXiv:
Limitations on quantum PCPs Aram Harrow based on joint work with Fernando G.S.L. Brandão (ETHZ->Imperial)
Quantum Approximate Markov Chains and the Locality of Entanglement Spectrum Fernando G.S.L. Brandão Caltech Seefeld 2016 based on joint work with Kohtaro.
Fernando G.S.L. Brandão MSR -> Caltech Faculty Summit 2016
Random Access Codes and a Hypercontractive Inequality for
Fernando G.S.L. Brandão and Martin B. Plenio
The complexity of the Separable Hamiltonian Problem
A Quantum Local Lemma Or Sattath TAU and HUJI Andris Ambainis
Quantum de Finetti theorems for local measurements
Dana Moshkovitz The Institute For Advanced Study
2nd Lecture: QMA & The local Hamiltonian problem
3rd Lecture: QMA & The local Hamiltonian problem (CNT’D)
Introduction to PCP and Hardness of Approximation
Presentation transcript:

Limitations for Quantum PCPs Fernando G.S.L. Brandão University College London Based on joint work arXiv: with Aram Harrow MIT Simons Institute, Berkeley, February 2014

Constraint Satisfaction Problems (k, Σ, n, m)-CSP : k: arity Σ: alphabet n: number of variables m: number of constraints Constraints: C j : Σ k -> {0, 1} Assignment: σ : [n] -> Σ

Quantum Constraint Satisfaction Problems (k, d, n, m)-qCSP H k: arity d: local dimension n: number of qudits m: number of constraints Constraints: P j k-local projection Assignment: |ψ> quantum state (k, Σ, n, m)-CSP : C k: arity Σ: alphabet n: number of variables m: number of constraints Constraints: C j : Σ k -> {0, 1} Assignment: σ : [n] -> Σ

Quantum Constraint Satisfaction Problems (k, d, n, m)-qCSP H k: arity d: local dimension n: number of qudits m: number of constraints Constraints: P j k-local projection Assignment: |ψ> quantum state (k, Σ, n, m)-CSP : C k: arity Σ: alphabet n: number of variables m: number of constraints Constraints: C j : Σ k -> {0, 1} Assignment: σ : [n] -> Σ min eigenvalueHamiltonian

Quantum Constraint Satisfaction Problems P j, j+1 j j+1 Ex 1: (2, 2, n, n-1)-qCSP on a line

Quantum Constraint Satisfaction Problems P j, j+1 j j+1 Ex 1: (2, 2, n, n-1)-qCSP on a line Ex 2: (2, 2, n, m)-qCSP with diagonal projectors: m m

PCP Theorem PCP Theorem (Arora, Safra; Arora-Lund-Motwani-Sudan-Szegedy ’98) There is a ε > 0 s.t. it’s NP-hard to determine whether for a CSP, unsat = 0 or unsat > ε -Compare with Cook-Levin thm: It’s NP-hard to determine whether unsat = 0 or unsat > 1/m. - Equivalent to the existence of Probabilistically Checkable Proofs for NP. - ( Dinur ’07) Combinatorial proof. -Central tool in the theory of hardness of approximation.

Quantum Cook-Levin Thm Local Hamiltonian Problem Given a (k, d, n, m)-qcsp H with constant k, d and m = poly(n), decide if unsat(H)=0 or unsat(H)>Δ Thm (Kitaev ‘99) The local Hamiltonian problem is QMA-complete for Δ = 1/poly(n) QMA is the quantum analogue of NP, where the proof and the computation are quantum. U1U1U1U1 …. U5U5U5U5 U4U4U4U4 U3U3U3U3 U2U2U2U2 input proof localitylocal dim

Quantum PCP? The Quantum PCP conjecture: There is ε > 0 s.t. the following problem is QMA-complete: Given (2, 2, n, m)-qcsp H determine whether (i) unsat(H)=0 or (ii) unsat(H) > ε. -(Bravyi, DiVincenzo, Loss, Terhal ‘08) Equivalent to conjecture for (k, d, n, m)-qcsp for any constant k, d. -At least NP-hard (by PCP Thm) and inside QMA -Open even for commuting qCSP ([P i, P j ] = 0) locality local dim

Motivation of the Problem -Hardness of approximation for QMA

Motivation of the Problem -Hardness of approximation for QMA -Quantum-hardness of computing mean groundenergy: no good ansatz for any low-energy state (caveat: interaction graph expander; not very physical)

Motivation of the Problem -Hardness of approximation for QMA -Quantum-hardness of computing mean groundenergy: no good ansatz for any low-energy state (caveat: interaction graph expander; not very physical) -Sophisticated form of quantum error correction?

Motivation of the Problem -Hardness of approximation for QMA -Quantum-hardness of computing mean groundenergy: no good ansatz for any low-energy state (caveat: interaction graph expander; not very physical) -Sophisticated form of quantum error correction? -For more motivation see review (Aharonov, Arad, Vidick ‘13) and Thomas recorded talk on bootcamp week

History of the Problem -(Aharonov, Naveh ’02) First mention

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto”

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto”

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto”

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto” -(Aharonov, Arad, Landau, Vazirani ‘08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?)

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto” -(Aharonov, Arad, Landau, Vazirani ‘08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?) -(Arad ‘10) NP-approximation for 2-local (arity 2) almost commuting qCSP

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto” -(Aharonov, Arad, Landau, Vazirani ‘08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?) -(Arad ‘10) NP-approximation for 2-local (arity 2) almost commuting qCSP -(Hastings ’12; Hastings, Freedman ‘13) “No low-energy trivial states” conjecture and evidence for its validity

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto” -(Aharonov, Arad, Landau, Vazirani ‘08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?) -(Arad ‘10) NP-approximation for 2-local (arity 2) almost commuting qCSP -(Hastings ’12; Hastings, Freedman ‘13) “No low-energy trivial states” conjecture and evidence for its validity -(Aharonov, Eldar ‘13) NP-approximation for k-local commuting qCSP on small set expanders and study of quantum locally testable codes

History of the Problem -(Aharonov, Naveh ’02) First mention -(Aaronson’ 06) “Quantum PCP manifesto” -(Aharonov, Arad, Landau, Vazirani ‘08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?) -(Arad ‘10) NP-approximation for 2-local (arity 2) almost commuting qCSP -(Hastings ’12; Hastings, Freedman ‘13) “No low-energy trivial states” conjecture and evidence for its validity -(Aharonov, Eldar ‘13) NP-approximation for k-local commuting qCSP on small set expanders and study of quantum locally testable codes -(B. Harrow ‘13) Approx. in NP for 2-local non-commuting qCSP this talk

“Blowing up” maps prop For every t ≥ 1 there is an efficient mapping from (2, Σ, n, m)-csp C to (2, Σ t, n t, m t )-csp C t s.t. (i) n t ≤ n O(t), m t ≤ m O(t) (ii) deg(C t ) ≥ deg(C) t (iv) unsat(C t ) ≥ unsat(C) (iii) |Σ t |= |Σ| t (v) unsat(C t ) = 0 if unsat(C) = 0

Example: Parallel Repetition (for kids) 1. write C as a cover label instance L on G(V, W, E) with function Π v,w : [N] -> [M] Labeling l : V -> [N], W -> [M] covers edge (v, w) if Π v,w (l(w)) = l(v) x1x2x3xnx1x2x3xn C1C2CmC1C2Cm … 2. Define L t on graph G’(V’, W’, E’) with V’ = V t, W’ = W t, [N’] = [N] t, [M’] = [M] t Edge set: Function: L iff (see parallel repetition session on Thursday)

Example: Parallel Repetition (for kids) 1. write C as a cover label instance L on G(V, W, E) with function Π v,w : [N] -> [M] Labeling l : V -> [N], W -> [M] covers edge (v, w) if Π v,w (l(w)) = l(v) x1x2x3xnx1x2x3xn C1C2CmC1C2Cm … 2. Define L t on graph G’(V’, W’, E’) with V’ = V t, W’ = W t, [N’] = [N] t, [M’] = [M] t Edge set: Function: L iff (see parallel repetition session on Thursday) Easy to see: (i)n t ≤ n O(t), m O(t) (ii)Deg(L t ) ≥ deg(C) t, (iii)unsat(L t ) ≥ unsat(C), (iv)|Σ t |= |Σ| t, (v)unsat(L t ) = 0 if unsat(C) = 0 (vi)unsat(L t ) ≥ unsat(C) In fact: (Raz ‘95) If unsat(C) ≥ δ, unsat(L t ) ≥ 1 – exp(-Ω(δ 3 t)

Quantum “Blowing up” maps + Quantum PCP?

Quantum “Blowing up” maps + Quantum PCP? Formalizes difficulty of “quantizing” proofs of the PCP theorem (e.g. Dinur’s proof; see (Aharonov, Arad, Landau, Vazirani ‘08) ) Obs: Apparently not related to parallel repetition for quantum games (see session on Thursday) thm If for every t ≥ 1 there is an efficient mapping from (2, d, n, m)-qcsp H to (2, d t, n t, m t )-qcsp H t s.t. (i) n t ≤ n O(t), m t ≤ m O(t) (ii) Deg(H t ) ≥ deg(H) t (iv) unsat(H t ) ≥ unsat(H) (iii) |d t |= |d| t (v) unsat(H t ) = 0 if unsat(H) = 0 then the quantum PCP conjecture is false.

Entanglement Monogamy… …is the main idea behind the result. Entanglement cannot be freely shared Ex. 1,

Entanglement Monogamy… …is the main idea behind the result. Entanglement cannot be freely shared Ex. 1, Ex. 2

Entanglement Monogamy… Entanglement cannot be freely shared Ex. 1, Ex. 2 Monogamy vs cloning: EPR ABcloning B1B1 B2B2 A maximally entangled with B 1 and B 2 A B1B1 B2B2 EPR teleportation cloning …is the main idea behind the result.

Entanglement Monogamy… A B1B1 B2B2 B3B3 BkBk A can only be substantially entangled with a few of the Bs How entangled it can be depends on the size of A. Ex. A …intuition:

Entanglement Monogamy… …intuition: A B1B1 B2B2 B3B3 BkBk A can only be substantially entangled with a few of the Bs How entangled it can be depends on the size of A. Ex. How to make it quantitative? 1.Study behavior of entanglement measures (distillable entanglement, squashed entanglement, …) 2. Study specific tasks (QKD, MIP *, …) 3. Quantum de Finetti Theorems A (see Patrick’s talk) (see sessions on MIP and device independent crypto) (see also Aram’s talk)

Quantum de Finetti Theorems Let ρ 1,…,n be permutation-symmetric, i.e. = swap Quantum de Finetti Thm: (Christandl, Koenig, Mitchson, Renner ‘05) In complete analogy with de Finetti thm for symmetric probability distributions But much more remarkable: entanglement is destroyed ρ

Quantum de Finetti Theorems Let ρ 1,…,n be permutation-symmetric, i.e. = swap Quantum de Finetti Thm: (Christandl, Koenig, Mitchson, Renner ‘05) In complete analogy with de Finetti thm for symmetric probability distributions But much more remarkable: entanglement is destroyed Final installment in a long sequence of works : (Hudson, Moody ’76), (Stormer ‘69), (Raggio, Werner ‘89), (Caves, Fuchs, Schack ‘01), (Koenig, Renner ‘05), … Can we improve on the error? (see Aram’s and Patrick’s talk) Can we find a more general result, beyond permutation-invariant states? ρ

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with n = |V|. Let ρ 1,…,n be a n-qudit state. Then there exists a globally separable state σ 1,…,n such that General Quantum de Finetti Globally separable (unentangled): probability distribution local states k l

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with n = |V|. Let ρ 1,…,n be a n-qudit state. Then there exists a globally separable state σ 1,…,n such that General Quantum de Finetti Ex 1. “Local entanglement”: Red edge: EPR pair For (i, j) red: But for all other (i, j): gives good approx. EPR Separable

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with n = |V|. Let ρ 1,…,n be a n-qudit state. Then there exists a globally separable state σ 1,…,n such that General Quantum de Finetti Ex 2. “Global entanglement”: Let ρ = |ϕ><ϕ| be a Haar random state |ϕ> has a lot of entanglement (e.g. for every region X, S(X) ≈ number qubits in X) But:

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with n = |V|. Let ρ 1,…,n be a n-qudit state. Then there exists a globally separable state σ 1,…,n such that General Quantum de Finetti Ex 3. Let ρ = |CAT> = (|0, …, 0> + |1, …, 1>)/√2 gives a good approximation

cor Let G = (V, E) be a D-regular graph with n = |V|. Let Then there exists such that Product-State Approximation -The problem is in NP for ε = O(d 2 log(d)/D) 1/3 (φ is a classical witness) -Limits the range of parameters for which quantum PCPs can exist -For any constants c, α, β > 0 it’s NP-hard to tell whether unsat = 0 or unsat ≥ c |Σ| α /D β

Product-State Approximation From thm to cor: Let ρ be optimal assignment (aka groundstate) for By thm: s.t. Then unsat(H)

Product-State Approximation From thm to cor: Let ρ be optimal assignment (aka groundstate) for By thm: s.t. Then So unsat(H)

Coming back to quantum “blowing up” maps + qPCP Suppose w.l.o.g. d 2 log(d)/D < ½ for C. Then there is a product state φ s.t. thm If for every t ≥ 1 there is an efficient mapping from (2, d, n)-qcsp H to (2, d t, n t )-qcsp H t s.t. (i) n t ≤ n O(t) (ii) Deg(H t ) ≥ deg(H) t (iv) unsat(H t ) ≥ unsat(H) (iii) |d t |= |d| t (v) unsat(H t ) = 0 if unsat(H) = 0 then the quantum PCP conjecture is false.

Proving de Finetti Approximation For simplicity let’s consider a star graph Want to show: there is a state s.t. A B1B1 B2B2 B3B3 BkBk

mutual info: I(X:Y) = H(X) + H(Y) – H(XY) For simplicity let’s consider a star graph Want to show: there is a state s.t. Idea: Use information theory. Consider A B1B1 B2B2 B3B3 BkBk (i) (ii) Proving de Finetti Approximation

mutual info: I(X:Y) = H(X) + H(Y) – H(XY) For simplicity let’s consider a star graph Want to show: there is a state s.t. Idea: Use information theory. Consider A B1B1 B2B2 B3B3 BkBk (i) (ii) Proving de Finetti Approximation

A B1B1 B2B2 B3B3 BkBk What small conditional mutual info implies? For X, Y, Z random variables No similar interpretation is known for I(X:Y|Z) with quantum Z Solution: Measure sites i 1, …., i s-1

Proof Sktech Consider a measurement and POVM

Proof Sktech There exists s ≤ D s.t. So with π r the postselected state conditioned on outcomes (r 1, …, r s-1 ). Consider a measurement and POVM

Proof Sktech There exists s ≤ D s.t. So with π r the postselected state conditioned on outcomes (r 1, …, r s-1 ). Thus: Consider a measurement and POVM (by Pinsker inequality)

But. Choosing Λ an informationally-complete measurement: Proof Sktech Conversion factor from info-complete meas. Again:

But. Choosing Λ an informationally-complete measurement: Proof Sktech Conversion factor from info-complete meas. Again: Separable state: Finally:

Product-State Approximation: General Theorem thm Let H be a 2-local Hamiltonian on qudits with D-regular interaction graph G(V, E) and |E| local terms. Let {X i } be a partition of the sites with each X i having m sites. Then there are states ϕ i in X i s.t. Φ G : average expansion S(X i ) : entropy of groundstate in X i X1X1 X2X2 size m

Product-State Approximation: General Theorem thm Let H be a 2-local Hamiltonian on qudits with D-regular interaction graph G(V, E) and |E| local terms. Let {X i } be a partition of the sites with each X i having m sites. Then there are states ϕ i in X i s.t. Φ G : average expansion S(X i ) : entropy of groundstate in X i X1X1 X2X2 size m 1.Degree 2.Average Expansion 3.Average entanglement

Summary and Open Questions Summary: Entanglement monogamy puts limitations on quantum PCPs and on approaches for proving them. Open questions: -Can we combine (BH ‘13) with (Aharonov, Eldar ‘13)? I.e. approximation for highly expanding non-commuting k-local models? (Needs to go beyond both product-state approximations and Bravyi-Vyalyi) - Relate quantum “blowing up” maps to quantum games? -Improved clock-constructions for better gap? (Daniel’s talk) - Understand better power of tensor network states (product states 1 st level) - (dis)prove quantum PCP conjecture!

Summary and Open Questions Summary: Entanglement monogamy puts limitations on quantum PCPs and on approaches for proving them. Open questions: -Can we combine (BH ‘13) with (Aharonov, Eldar ‘13)? I.e. approximation for highly expanding non-commuting k-local models? (Needs to go beyond both product-state approximations and Bravyi-Vyalyi ) - Relate quantum “blowing up” maps to quantum games? -Improved clock-constructions for better gap? (Daniel’s talk) - Understand better power of tensor network states (product states 1 st level) - (dis)prove quantum PCP conjecture! Thanks!