Las Cruces CRS April 21-22, 2011 F.B. McDonald 1, A.C. Cummings 2, E.C. Stone 2, B.C. Heikkila 3, N. Lal 3, W.R. Webber 4 1 Institute for Physical Science.

Slides:



Advertisements
Similar presentations
The Johns Hopkins University Applied Physics Laboratory SHINE 2005, July 11-15, 2005 Transient Shocks and Associated Energetic Particle Events Observed.
Advertisements

THREE-DIMENSIONAL ANISOTROPIC TRANSPORT OF SOLAR ENERGETIC PARTICLES IN THE INNER HELIOSPHERE CRISM- 2011, Montpellier, 27 June – 1 July, Collaborators:
Investigation of daily variations of cosmic ray fluxes in the beginning of 24 th solar activity cycle Ashot Chilingarian, Bagrat Mailyan IHY-ISWI Regional.
S. Della Torre 1,2, P. Bobik 5, G. Boella 1,3, M.J. Boschini 1,4, C. Consolandi 1, M. Gervasi 1,3, D. Grandi 1, K. Kudela 5, F. Noventa 1,3, S. Pensotti.
Study of Galactic Cosmic Rays at high cut- off rigidity during solar cycle 23 Partha Chowdhury 1 and B.N. Dwivedi 2 1 Department of Physics, University.
Petukhov I.S., Petukhov S.I. Yu.G. Shafer Institute for Cosmophysical Research and Aeronomy SB RAS 21st European Cosmic Ray Symposium in Košice, Slovakia.
A New Look at the Heliosphere and Solar Modulation
Galactic and Anomalous Cosmic Rays in the Heliosheath József Kόta University of Arizona Tucson, AZ , USA Thanks to : J.R. Jokipii, J. Giacalone.
Weaker Solar Wind Over the Protracted Solar Minimum Dave McComas Southwest Research Institute San Antonio, TX With input from and thanks to Heather Elliott,
Bastille Day 2000 Solar Energetic Particles Event: Ulysses observations at high heliographic latitudes M. Zhang Florida Institute of Technology.
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
1 Voyager Observations of Energetic Particles in the Distant Heliosheath A. C. Cummings and E. C. Stone, Caltech N. Lal and B. Heikkila, Goddard Space.
The Acceleration of Anomalous Cosmic Rays by the Heliospheric Termination Shock J. A. le Roux, V. Florinski, N. V. Pogorelov, & G. P. Zank Dept. of Physics.
Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd March 2005 A 3D cosmic ray detector on the Moon X. Moussas University.
Solar activity over the last 1150 years: does it correlate with climate? S.K. Solanki 1, I. Usoskin 2, M. Schüssler 1, K. Mursula 2 1: Max-Planck-Institut.
Plasma in the Heliosheath John Richardson M.I.T. Collaborators: J. Belcher, J. Kasper, E. Stone, C. Wang.
1 Heliospheric Magnetic Field Leif Svalgaard Stanford University, CA
Radiation conditions during the GAMMA-400 observations:
1 Voyager 1 CRS Update SSG Meeting JHU/APL 9 September 2013.
Solar Modulation: A Theoretical Perspective Modeling of cosmic ray charge-sign dependence in the heliosphere Marius Potgieter Unit for Space Physics North-West.
30 Years in Space: The Voyagers and the Distant Heliosphere Péter Király KFKI Research Institute for Particle and nuclear Physics, Budapest, Hungary Kosice,
Cosmic Rays in the Heliosphere J. R. Jokipii University of Arizona I acknowledge helpful discussions with J. Kόta and J. GIacalone. Presented at the TeV.
Decay Phase of Proton and Electron SEP Events E.I. Daibog 1, K. Kecskeméty 2, Yu.I. Logachev 1 1 Skobeltsyn Inst. of Nuclear Physics, Moscow State Univ.,
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
Ed Stone Symposium February 11, 2006 Voyager Observations of Galactic and Anomalous Cosmic Rays in the Heliosheath F.B. M c Donald 1, W.R. Webber 2, E.C.
02-06 Dec 2013CHPC-Cape town1 A study of the global heliospheric modulation of galactic Carbon M. D. Ngobeni, M. S. Potgieter Centre for Space Research,
Voyager 2 Observations of Magnetic Waves due to Interstellar Pickup Ions Colin J. Joyce Charles W. Smith, Phillip A. Isenberg, Nathan A. Schwadron, Neil.
P. Bobik, G. Boella, M. J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita 2D Stochastic Monte Carlo to evaluate the modulation.
27-Day Variations Of The Galactic Cosmic Ray Intensity And Anisotropy In Different Solar Magnetic Cycles ( ) M.V. Alania, A. Gil, K. Iskra, R.
39 th COSPAR Scientific Assembly Mysore, INDIA July 14-22, 2012 F.B. McDonald 1, W.R. Webber 2, E.C. Stone 3, A.C. Cummings 3, B.C. Heikkila 4, N. Lal.
Centenary Symposium 2012 University of Denver June 26-28, 2012 F.B. McDonald 1, W.R. Webber 2, E.C. Stone 3, A.C. Cummings 3, B.C. Heikkila 4, N. Lal 4.
Solar Cycle Variation of the Heliospheric Magnetic Flux, Solar Wind Flux and Galactic Cosmic Rays Charles W. Smith, Nathan A. Schwadron Ken G. McCracken,
Primary Cosmic Ray Spectra in the Planet Atmospheres Marusja Buchvarova 1, Peter Velinov 2 (1) Space Research Institute – Bulgarian Academy of Sciences,
Voyager Observations of Galactic and Anomalous Cosmic Rays at the Termination Shock and in the Heliosheath Voyager CRS Science Team: E.C. Stone (PI) 1,
Cosmic Rays at 1 AU Over the Deep Solar Minimum of Cycle 23/24 Cosmic Ray Transport in the Helioshealth: The View from Voyager AGU Fall Meeting San Francisco,
The Suprathermal Tail Properties are not well understood; known contributors Heated solar wind Interstellar and inner source pickup ions Prior solar and.
16-20 Oct 2005SSPVSE Conference1 Galactic Cosmic Ray Composition, Spectra, and Time Variations Mark E. Wiedenbeck Jet Propulsion Laboratory, California.
2008 FANFARE SELECTED TOPICS ON THE STUDY OF LOW ENERGY GALACTIC COSMIC RAYS F.B. M c Donald Institute for Physical Science and Technology, Univ. of Maryland,
WG3 Session#3 Thursday PM: This session focused on the global effects of the Sun as seen in the outer heliosphere. The largest solar energetic particle.
08/4/2009NAS - SHINE-Suprathermal Radial Evolution (1-11 AU) of Pickup Ions and Suprathermal Ions in the Heliosphere N. A. Schwadron Boston University,
Measurements of the Orientation of the Heliospheric Magnetic Field Neil Murphy Jet Propulsion Laboratory.
A NEW LOOK AT THE HELIOSPHRE AND SOLAR MODULATION The V1/V2 Saga and the Deep Minimum of Solar Cycle 23/24 Voyager CRS Science Team: E.C. Stone (PI) 1,
Low-energy Ion Distributions at the Termination Shock Rob Decker Johns Hopkins Univ., Applied Physics Lab., Laurel, MD SHINE, June-2008, Zermatt.
Voyager Observations of Galactic Cosmic Ray Transport in the Heliosheath and their Reacceleration at the Termination Shock F.B. McDonald 1, W.R. Webber.
Voyager SSG November 3-4, 2011 F.B. McDonald 1, A.C. Cummings 2, E.C. Stone 2, B.C. Heikkila 3, N. Lal 3, W.R. Webber 4 1 Institute for Physical Science.
GCRs & ACRs Intensities during the last Solar Minimum: Similarities and Differences J. Kόta & J.R. Jokipii University of Arizona, LPL 32 nd ICRC Beijing,
WHERE WERE THE ANOMALOUS COSMIC RAYS WHEN VOYAGER 1 CROSSED THE TERMINATION SHOCK? Voyager CRS Science Team: E.C. Stone (PI) 1, A.C. Cummings 1, B.C. Heikkila.
Breakout Session F: Anomalous and Galactic Cosmic Rays Rick Leske and Maher Dayeh 5 presentations…and lots of discussion.
The heliospheric magnetic flux density through several solar cycles Géza Erdős (1) and André Balogh (2) (1) MTA Wigner FK RMI, Budapest, Hungary (2) Imperial.
1 Voyager Observations of Anomalous Cosmic Rays A. C. Cummings and E. C. Stone, Caltech F. B. McDonald, University of Maryland B. Heikkila and N. Lal,
Observations of spectral shapes of suprathermal H +, He + and He ++ G. Gloeckler Department of Atmospheric, Oceanic and Space Sciences University of Michigan,
Using the paleo-cosmic ray record to compare the solar activity during the sunspot minimum of with those during the Spoerer, Maunder, and Dalton.
Drift Effects if the 22-year Solar Cycle of Cosmic Ray Modulation
35th International Cosmic Ray Conference
Solar modulation of cosmic ray positrons in a quiet heliosphere
35th International Cosmic Ray Conference
George C. Ho1, David Lario1, Robert B. Decker1, Mihir I. Desai2,
Rick Leske, A. C. Cummings, C. M. S. Cohen, R. A. Mewaldt,
Solar Modulation Davide Grandi AMS Group-INFN Milano-Bicocca.
Voyager Observations in the Heliosheath: An Overview
Galactic Cosmic Ray Propagation in the 3D Heliosphere
M. D Ngobeni*,1, M. S. Potgieter1
Voyager Observations of Anomalous Cosmic Rays in the Outer Heliosphere
Rick Leske, A. C. Cummings, R. A. Mewaldt, and E. C. Stone
Ulysses COSPIN High Energy Telescope observations of cosmic ray and solar energetic particles intensities since its distant Jupiter flyby in 2004 R.B.
Xi Luo1, Ming Zhang1, Hamid K. Rassoul1, and N.V. Pogorelov2
  V1 and V2 Measurements of Galactic and Anomalous Cosmic Rays in the Outer Heliosphere and the Heliosheath during Solar Cycle #23   W.R. Webber (The.
On the relative role of drift and convection-diffusion effects in the long-term CR variations on the basis of NM and satellite data Lev Dorman (1, 2) Israel.
International Workshop
Presentation transcript:

Las Cruces CRS April 21-22, 2011 F.B. McDonald 1, A.C. Cummings 2, E.C. Stone 2, B.C. Heikkila 3, N. Lal 3, W.R. Webber 4 1 Institute for Physical Science and Technology, Univ. of Maryland, College Park, MD, USA 2 California Institute of Technology, Pasadena, CA, USA 3 NASA/Goddard Space Flight Center, Greenbelt, MD, USA 4 Dept. of Physics and Astronomy, New Mexico State Univ., Las Cruces, New Mexico, USA A New Look at the Heliosphere and Solar Modulation

IPB is 28% below the previous minima of cycles Heliospheric neutral current sheet approaches minimum value at a slower rate than previously observed. Wang, Robbrecht and Sheely (2009) have pointed out that these effects appear to be related – the weaker polar fields result in the apparent refusal of the heliospheric current sheet to flatten closer to the equator.

Comparison of ACE, WIND and NM Data (2000 – ) with IMP-8 Data Transposed from 20 Years Earlier

% of change from solar maximum to minimum SANAE 4NMD0.45%3.1% 200 MeV/n GCR He3.5%0.7% 8-18 MeV ACR O40%0.2% Cosmic Ray response to 5° transient increase in the tilt angle of heliospheric neutral current sheet.

Ken McCracken, 2007 ICRC

RESPONSE FUNCTION

GCR He and H in the Heliosheath Radial Gradients < 0.2 %/AU over The V2 decrease starting in is not understood

Voyager – % Below Webber/Higbie LIS MeV/n GCR He 7.4 %/Year21% 145 – 244 MeV/n GCR He 9.6 %/Year30% MeV GCR H15.5 %/Year44% 30 – 56 MeV/n ACR He 3.5 %/Year MeV GCR E 75.0 %/Year

Regression

Cosmic Ray Modulation

1 AU Comparison

Low Energy Galactic Cosmic Ray Electrons (2 – 160 MeV) (Raw Data) Data from – indicates the background level of the electron telescope. There is no radial intensity gradient despite the large radial separation. The background is produced by higher energy protons (close to minimum ionizing)

Low Energy Galactic Cosmic Ray Electrons (2 – 160 MeV) versus HEP Background correction procedure for selected electron channels. HEP rates correspond to H > 200 MeV The electron intensity closely tracks the integral rate of GCR H > 200 MeV from 1986 to In addition, the electron “radial intensity gradient” was negative in 1987 between V1 and V2, clearly a background effect. The detector is background dominated until it reaches the vicinity of the heliosheath.

V1,V2 Background Subtracted Low Energy Galactic Cosmic Ray Electrons The large electron increases that occur just prior to the V1 TSX are associated with the passage of strong IP transients. The V2 TSX occurred closer to solar minimum and the large increases at energies less than 30 MeV immediately after crossing are interpreted as local acceleration at the TS.

Voyager Electron Energy Spectra The V2 electron spectra is from shortly after the termination shock crossing. The V2 spectra is steeper than that of V1 which is interpreted as due to reacceleration at the termination shock. V1 spectral slope = 1.6 V2 spectral slope = 2.9

DISCUSSION and CONCLUSIONS The ongoing period of very low solar activity has a multi-faceted effect on the modulation process. The increase in MeV/n GCR He appears to be strongly related to the decrease in the heliospheric magnetic field. The tilt angle changes of the heliospheric current sheet plays a major role for ACR O and for Neutron Monitors. The lower IPB field will have a significant effect through-out the heliosphere. At the Voyagers in the heliosheath there is an on-going increase of 265 MeV/n He (7.4%/year) and H (15.5%/year) that is temporal and not spatial in nature. Since drift effects are not expected to be important in the heliosheath, this increase is probably related to the lower B field. The lower solar wind velocity and pressure will have an effect on the dimensions of the heliosphere and probably on the particle diffusion coefficients.

DISCUSSION and CONCLUSIONS Over the last 1000 years there have been previous epochs of low solar activity that have resulted in significant increases in the GCR intensity. As measured by archival data from 10 Be in polar ice cores and 10 C in tree rings. Caballero-Lopez et. al. modeled the cosmic ray intensity variations from AD by varying the strength of the heliospheric magnetic field. At the Maunder Minimum a value as low as 2nT was required for certain periods. Reductions in the solar wind speed and density could lead to larger values of IPB for those periods. The current Quiet Sun period should provide insight into the changes that occurred on the Sun and in the IP medium over those very unusual earlier periods. It is especially important to get contemporaneous measurements of 10 Be.