Description of CHORD’s Location and routing mechanisms Vincent Matossian October 12 th 2001 ECE 579.

Slides:



Advertisements
Similar presentations
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Advertisements

CHORD – peer to peer lookup protocol Shankar Karthik Vaithianathan & Aravind Sivaraman University of Central Florida.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert MorrisDavid, Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Prepared by Ali Yildiz (with minor modifications by Dennis Shasha)
Technische Universität Yimei Liao Chemnitz Kurt Tutschku Vertretung - Professur Rechner- netze und verteilte Systeme Chord - A Distributed Hash Table Yimei.
Technische Universität Chemnitz Kurt Tutschku Vertretung - Professur Rechner- netze und verteilte Systeme Chord - A Distributed Hash Table Yimei Liao.
IBM Haifa Research 1 Finding Data in the Cloud using Distributed Hash Tables (Chord) IBM Haifa Research Storage Systems.
Chord: A Scalable Peer-to- Peer Lookup Service for Internet Applications Ion StoicaRobert Morris David Liben-NowellDavid R. Karger M. Frans KaashoekFrank.
The Chord P2P Network Some slides have been borowed from the original presentation by the authors.
CHORD: A Peer-to-Peer Lookup Service CHORD: A Peer-to-Peer Lookup Service Ion StoicaRobert Morris David R. Karger M. Frans Kaashoek Hari Balakrishnan Presented.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Speaker: Cathrin Weiß 11/23/2004 Proseminar Peer-to-Peer Information Systems.
Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M
Chord: A scalable peer-to- peer lookup service for Internet applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashock, Hari Balakrishnan.
1 1 Chord: A scalable Peer-to-peer Lookup Service for Internet Applications Dariotaki Roula
P2P Network Structured Networks: Distributed Hash Tables Pedro García López Universitat Rovira I Virgili
Chord:A scalable peer-to-peer lookup service for internet applications
Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 22: Overlay Networks Xiaowei Yang
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications
Robert Morris, M. Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica, David Liben-Nowell, Frank Dabek Chord: A scalable peer-to-peer look-up.
Robert Morris, M. Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica, David Liben-Nowell, Frank Dabek Chord: A scalable peer-to-peer look-up protocol.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion StoicaRobert Morris David Liben-NowellDavid R. Karger M. Frans KaashoekFrank.
Common approach 1. Define space: assign random ID (160-bit) to each node and key 2. Define a metric topology in this space,  that is, the space of keys.
Peer to Peer File Sharing Huseyin Ozgur TAN. What is Peer-to-Peer?  Every node is designed to(but may not by user choice) provide some service that helps.
1 Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Robert Morris Ion Stoica, David Karger, M. Frans Kaashoek, Hari Balakrishnan.
Topics in Reliable Distributed Systems Lecture 2, Fall Dr. Idit Keidar.
Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications Stoica et al. Presented by Tam Chantem March 30, 2007.
Distributed Lookup Systems
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari alakrishnan.
Secure Overlay Services Adam Hathcock Information Assurance Lab Auburn University.
Topics in Reliable Distributed Systems Fall Dr. Idit Keidar.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications 吳俊興 國立高雄大學 資訊工程學系 Spring 2006 EEF582 – Internet Applications and Services 網路應用與服務.
Wide-area cooperative storage with CFS
EE 122: A Note On Joining Operation in Chord Ion Stoica October 20, 2002.
Concurrent node joins and Stabilization Παρουσίαση: Νίκος Κρεμμυδάς Πάνος Σκυβαλίδας.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Lecture 3 1.
Symmetric Replication in Structured Peer-to-Peer Systems Ali Ghodsi, Luc Onana Alima, Seif Haridi.
Effizientes Routing in P2P Netzwerken Chord: A Scalable Peer-to- peer Lookup Protocol for Internet Applications Dennis Schade.
Content Overlays (Nick Feamster). 2 Content Overlays Distributed content storage and retrieval Two primary approaches: –Structured overlay –Unstructured.
Chord & CFS Presenter: Gang ZhouNov. 11th, University of Virginia.
1 Reading Report 5 Yin Chen 2 Mar 2004 Reference: Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications, Ion Stoica, Robert Morris, david.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Xiaozhou Li COS 461: Computer Networks (precept 04/06/12) Princeton University.
Presentation 1 By: Hitesh Chheda 2/2/2010. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT Laboratory for Computer Science.
Node Lookup in P2P Networks. Node lookup in p2p networks In a p2p network, each node may provide some kind of service for other nodes and also will ask.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Presented by: Tianyu Li
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Presented.
SIGCOMM 2001 Lecture slides by Dr. Yingwu Zhu Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Lecture 2 Distributed Hash Table
1 Secure Peer-to-Peer File Sharing Frans Kaashoek, David Karger, Robert Morris, Ion Stoica, Hari Balakrishnan MIT Laboratory.
Chord Advanced issues. Analysis Theorem. Search takes O (log N) time (Note that in general, 2 m may be much larger than N) Proof. After log N forwarding.
Chord Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google,
Chord Advanced issues. Analysis Search takes O(log(N)) time –Proof 1 (intuition): At each step, distance between query and peer hosting the object reduces.
Md Tareq Adnan Centralized Approach : Server & Clients Slow content must traverse multiple backbones and long distances Unreliable.
CS694 - DHT1 Distributed Hash Table Systems Hui Zhang University of Southern California.
The Cost of Inconsistency in Chord Shelley Zhuang, Ion Stoica, Randy Katz OASIS/i3 Retreat, January 2005.
Chapter 5 Naming (I) Speaker : Jyun-Yao Huang 1 Application and Practice of Distributed Systems.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications * CS587x Lecture Department of Computer Science Iowa State University *I. Stoica,
1 Distributed Hash tables. 2 Overview r Objective  A distributed lookup service  Data items are distributed among n parties  Anyone in the network.
The Chord P2P Network Some slides taken from the original presentation by the authors.
The Chord P2P Network Some slides have been borrowed from the original presentation by the authors.
Distributed Hash Tables
A Scalable Peer-to-peer Lookup Service for Internet Applications
(slides by Nick Feamster)
DHT Routing Geometries and Chord
Chord Advanced issues.
P2P Systems and Distributed Hash Tables
Chord Advanced issues.
Chord Advanced issues.
MIT LCS Proceedings of the 2001 ACM SIGCOMM Conference
A Scalable Peer-to-peer Lookup Service for Internet Applications
Presentation transcript:

Description of CHORD’s Location and routing mechanisms Vincent Matossian October 12 th 2001 ECE 579

Overview Maps keys onto nodes in a 1D circular space Uses consistent hashing – D.Karger, E.Lehman Aimed at large-scale peer-to-peer applications Consistent hashing Algorithm for key location Algorithm for node joining Algorithm for stabilization Failures and replication Chord: Talk

Consistent hashing Distributed caches to relieve hotspots on the web Node identifier hash = hash(IP address) Key identifier hash = hash(key) Designed to let nodes enter and leave the network with minimal disruption In Chord hash function is Secure Hash SHA-1 A key is stored at its successor: node with next higher ID

Key Location Finger tables allow faster location by providing additional routing information than simply successor node NotationDefinition finger[k].start(n+2 k-1 )mod 2 m, 1=<k=<m.interval[finger[k].start,finger[k+1].start).nodefirst node>=n.finger[k].start successorthe next node on the identifier circle; finger[1].node predecessorthe previous node on the identifier circle k is the finger table index

Lookup(id) Finger table for Node 1 Finger tables and key locations with nodes 0,1,3 and keys 1,2 and 6

Lookup PseudoCode To find the successor of an id : Chord returns the successor of the closest preceding finger to this id. Finding successor of identifier 1

Lookup cost The finger pointers at repeatedly doubling distances around the circle cause each iteration of the loop in find_predecessor to halve the distance to the target identifier. In an N node Network the number of messages is of O(Log N)

Node Join/Leave Finger Tables and key locations after Node 6 joinsAfter Node 3 leaves Changed values are in black, unchanged in gray

Join PseudoCode Three steps: 1- Initialize finger and predecessor of new node n 2- Update finger and predecessor of existing nodes to reflect the addition of n n becomes i th finger of node p if: p precedes n by at least 2 i-1 i th finger of node p succeeds n 3- Transfer state associated with keys that node n is now responsible for New node n only needs to contact node that immediately forwards it to transfer responsibility for all relevant keys

Join/leave cost Number of nodes that need to be updated when a node joins is O(Log N) Finding and updating those nodes takes O(Log 2 N)

Stabilization If nodes join and stabilization not completed 3 cases are possible –finger tables are current  lookup successful –successors valid, fingers not  lookup successful (because find_successor succeeds) but slower –successors are invalid or data hasn’t migrated  lookup fails

Stabilization cont’d nsns n npnp Node n joins n acquires n s as successor n p runs stabilize: asks n s for its predecessor (n) n p acquires n as its successor n p notifies n which acquires n p as predecessor Predecessors and successors are correct

Failures and replication Key step in failure recovery is correct successor pointers Each node maintains a successor-list of r nearest successors Knowing r allows Chord to inform the higher layer software when successors come and go  when it should propagate new replicas

Algorithms find_successor() return find_predecessor().successor find_predecessor() while(id not in [n,n.successor]) n=n.closest_preceding_finger() closest_preceding_finger() from last level in FT to first: if(succAtLevel in (n,id)) return succAtLevel join() init_finger_tables() update_others() init_finger_tables() successor=node.find_successor() predecessor=successor.predecessor predecessor.successor=new everything btw new and successor gets assigned this successor as succ update_others() for each level in FT l=find_predecessor() l.update_finger_table update_finger_table() if(new in [this, successor]) p=getPredecessor if(p!new) p.update_finger_table joins 6