Analysis of Social Media MLD 10-802, LTI 11-772 William Cohen 1-25-010.

Slides:



Advertisements
Similar presentations
Peer-to-Peer and Social Networks Power law graphs Small world graphs.
Advertisements

Algorithmic and Economic Aspects of Networks Nicole Immorlica.
Analysis and Modeling of Social Networks Foudalis Ilias.
VL Netzwerke, WS 2007/08 Edda Klipp 1 Max Planck Institute Molecular Genetics Humboldt University Berlin Theoretical Biophysics Networks in Metabolism.
Synopsis of “Emergence of Scaling in Random Networks”* *Albert-Laszlo Barabasi and Reka Albert, Science, Vol 286, 15 October 1999 Presentation for ENGS.
Models of Network Formation Networked Life NETS 112 Fall 2013 Prof. Michael Kearns.
Generative Models for the Web Graph José Rolim. Aim Reproduce emergent properties: –Distribution site size –Connectivity of the Web –Power law distriubutions.
Information Networks Small World Networks Lecture 5.
CS 599: Social Media Analysis University of Southern California1 The Basics of Network Analysis Kristina Lerman University of Southern California.
4. PREFERENTIAL ATTACHMENT The rich gets richer. Empirical evidences Many large networks are scale free The degree distribution has a power-law behavior.
CSE 522 – Algorithmic and Economic Aspects of the Internet Instructors: Nicole Immorlica Mohammad Mahdian.
1 Evolution of Networks Notes from Lectures of J.Mendes CNR, Pisa, Italy, December 2007 Eva Jaho Advanced Networking Research Group National and Kapodistrian.
Emergence of Scaling in Random Networks Barabasi & Albert Science, 1999 Routing map of the internet
Graphs (Part I) Shannon Quinn (with thanks to William Cohen of CMU and Jure Leskovec, Anand Rajaraman, and Jeff Ullman of Stanford University)
Directional triadic closure and edge deletion mechanism induce asymmetry in directed edge properties.
Networks. Graphs (undirected, unweighted) has a set of vertices V has a set of undirected, unweighted edges E graph G = (V, E), where.
Network Models Social Media Mining. 2 Measures and Metrics 2 Social Media Mining Network Models Why should I use network models? In may 2011, Facebook.
Network Statistics Gesine Reinert. Yeast protein interactions.
Peer-to-Peer and Grid Computing Exercise Session 3 (TUD Student Use Only) ‏
Common Properties of Real Networks. Erdős-Rényi Random Graphs.
Advanced Topics in Data Mining Special focus: Social Networks.
The structure of the Internet. How are routers connected? Why should we care? –While communication protocols will work correctly on ANY topology –….they.
Graphs and Topology Yao Zhao. Background of Graph A graph is a pair G =(V,E) –Undirected graph and directed graph –Weighted graph and unweighted graph.
1 Algorithms for Large Data Sets Ziv Bar-Yossef Lecture 7 May 14, 2006
The structure of the Internet. The Internet as a graph Remember: the Internet is a collection of networks called autonomous systems (ASs) The Internet.
Peer-to-Peer and Social Networks Random Graphs. Random graphs E RDÖS -R ENYI MODEL One of several models … Presents a theory of how social webs are formed.
Large-scale organization of metabolic networks Jeong et al. CS 466 Saurabh Sinha.
Optimization Based Modeling of Social Network Yong-Yeol Ahn, Hawoong Jeong.
Information Networks Power Laws and Network Models Lecture 3.
(Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Oct 16th, 2012.
Topic 13 Network Models Credits: C. Faloutsos and J. Leskovec Tutorial
Biological Networks Lectures 6-7 : February 02, 2010 Graph Algorithms Review Global Network Properties Local Network Properties 1.
Author: M.E.J. Newman Presenter: Guoliang Liu Date:5/4/2012.
Analysis of Social Media MLD , LTI William Cohen
Small World Social Networks With slides from Jon Kleinberg, David Liben-Nowell, and Daniel Bilar.
Principles of Social Network Analysis. Definition of Social Networks “A social network is a set of actors that may have relationships with one another”
Clustering of protein networks: Graph theory and terminology Scale-free architecture Modularity Robustness Reading: Barabasi and Oltvai 2004, Milo et al.
COLOR TEST COLOR TEST. Social Networks: Structure and Impact N ICOLE I MMORLICA, N ORTHWESTERN U.
Online Social Networks and Media
Social Network Analysis Prof. Dr. Daning Hu Department of Informatics University of Zurich Mar 5th, 2013.
Graph Algorithms: Properties of Graphs? William Cohen.
Λ14 Διαδικτυακά Κοινωνικά Δίκτυα και Μέσα Networks and Surrounding Contexts Chapter 4, from D. Easley and J. Kleinberg book.
3. SMALL WORLDS The Watts-Strogatz model. Watts-Strogatz, Nature 1998 Small world: the average shortest path length in a real network is small Six degrees.
Neural Network of C. elegans is a Small-World Network Masroor Hossain Wednesday, February 29 th, 2012 Introduction to Complex Systems.
Class 9: Barabasi-Albert Model-Part I
Lecture 10: Network models CS 765: Complex Networks Slides are modified from Networks: Theory and Application by Lada Adamic.
Analysis of Social Media MLD , LTI William Cohen
Most of contents are provided by the website Network Models TJTSD66: Advanced Topics in Social Media (Social.
Analysis of Social Media MLD , LTI William Cohen
1 CIS 4930/6930 – Recent Advances in Bioinformatics Spring 2014 Network models Tamer Kahveci.
Small World Social Networks With slides from Jon Kleinberg, David Liben-Nowell, and Daniel Bilar.
Informatics tools in network science
Topics In Social Computing (67810) Module 1 Introduction & The Structure of Social Networks.
Algorithms and Computational Biology Lab, Department of Computer Science and & Information Engineering, National Taiwan University, Taiwan Network Biology.
Network (graph) Models
Hiroki Sayama NECSI Summer School 2008 Week 2: Complex Systems Modeling and Networks Network Models Hiroki Sayama
Social Networks Analysis
Milgram’s experiment really demonstrated two striking facts about large social networks: first, that short paths are there in abundance;
Generative Model To Construct Blog and Post Networks In Blogosphere
The Watts-Strogatz model
Models of Network Formation
The likelihood of linking to a popular website is higher
Models of Network Formation
Peer-to-Peer and Social Networks Fall 2017
Models of Network Formation
Small World Networks Scotty Smith February 7, 2007.
Models of Network Formation
Peer-to-Peer and Social Networks
Lecture 9: Network models CS 765: Complex Networks
Network Science: A Short Introduction i3 Workshop
Presentation transcript:

Analysis of Social Media MLD , LTI William Cohen

Recap: What are we trying to do? Like the normal curve: Fit real-world data Find an underlying process that “explains” the data Enable mathematical understandingl (closed- form?) Modelssome small but interesting part of the data

Graphs Some common properties of graphs: – Distribution of node degrees – Distribution of cliques (e.g., triangles) – Distribution of paths Diameter (max shortest- path) Effective diameter (90 th percentile) Connected components – … Some types of graphs to consider: – Real graphs (social & otherwise) – Generated graphs: Erdos-Renyi “Bernoulli” or “Poisson” Watts-Strogatz “small world” graphs Barbosi-Albert “preferential attachment” …

Graphs Some types of graphs to consider: – Real graphs (social & otherwise) – Generated graphs: Erdos-Renyi “Bernoulli” or “Poisson” Watts-Strogatz “small world” graphs Barbosi-Albert “preferential attachment” … All pairs connected with probability p

Graphs Some types of graphs to consider: – Real graphs (social & otherwise) – Generated graphs: Erdos-Renyi “Bernoulli” or “Poisson” Watts-Strogatz “small world” graphs Barbosi-Albert “preferential attachment” … Regular, high-homophily lattice Plus random “shortcut” links

Graphs Some types of graphs to consider: – Real graphs (social & otherwise) – Generated graphs: Erdos-Renyi “Bernoulli” or “Poisson” Watts-Strogatz “small world” graphs Barbosi-Albert “preferential attachment” … New nodes have m neighbors High-degree nodes are preferred “Rich get richer”

Graphs Some common properties of graphs: – Distribution of node degrees – Distribution of cliques (e.g., triangles) – Distribution of paths Diameter (max shortest- path) Effective diameter (90 th percentile) Connected components – … Some types of graphs to consider: – Real graphs (social & otherwise) – Generated graphs: Erdos-Renyi “Bernoulli” or “Poisson” Watts-Strogatz “small world” graphs Barbosi-Albert “preferential attachment” …

Graphs Some common properties of graphs: – Distribution of node degrees – Distribution of cliques (e.g., triangles) – Distribution of paths Diameter (max shortest- path) Effective diameter (90 th percentile) Connected components – …

Graphs Some common properties of graphs: – Distribution of node degrees – Distribution of cliques (e.g., triangles) – Distribution of paths Diameter (max shortest- path) Effective diameter (90 th percentile) Connected components – … In a big Erdos-Renyi graph this is very small (1/n) In social graphs, not so much More later…

Graphs Some common properties of graphs: – Distribution of node degrees – Distribution of cliques (e.g., triangles) – Distribution of paths Diameter (max shortest- path) Effective diameter (90 th percentile) Mean diameter Connected components – … In a big Erdos-Renyi graph this is small (logn/logz) In social graphs, it is also small (“6 degrees”)

Graphs Some common properties of graphs: – Distribution of node degrees – Distribution of cliques (e.g., triangles) – Distribution of paths Diameter (max shortest- path) Effective diameter (90 th percentile) Mean diameter Connected components – … In a big Erdos-Renyi graph there is one “giant connected component”… … because two giant connected components cannot co-exist for long.

n/a Poor fit

More terms Centrality and betweenness: how does your position in a network affect what you do and how you do it? – And how can we define these precisely? High centrality: ringleaders? High betweenness: go-between, conduit between different groups? – “Structural hole” Group cohesiveness: number of edges within a (sub)group

More terms

Association network: bipartite network where nodes are people or organizations

A larger association network

Triads and clustering coefficients In a random Erdos-Renyi graph: In natural graphs two of your mutual friends might well be friends: Like you they are both in the same class (club, field of CS, …) You introduced them

Watts-Strogatz model Start with a ring Connect each node to k nearest neighbors  homophily Add some random shortcuts from one point to another  small diameter Degree distribution not scale-free Generalizes to d dimensions

Even more terms Homophily: tendency for connected nodes to have similar properties Social contagion: connected nodes become similar over time Associative sorting: similar nodes tend to connect Disassociative sorting: vice-versa Association network: bipartite network where nodes are people or organizations

A big question Homophily: similar nodes ~= connected nodes Which is cause and which is effect? – Do birds of a feather flock together? – Do you change your behavior based on the behavior of your peers? – Do both happen in different graphs? Can there be a combination of associative sorting and social contagion in the same graph?

A big question about homophily Which is cause and which is effect? – Do birds of a feather flock together? – Do you change your behavior based on the behavior of your peers? How can you tell? – Look at when links are added and see what patterns emerge (triadic closure): Pr(new link btwn u and v | #common friends)

T(k) = 1 – (1-p)^k T(k) = 1 – (1-p)^(k-1) Triadic closure

Changing behavior

Final example: spatial segregation How picky do people have to be about their neighbors for homophily to arise? Imagine a grid world where – Agents are red or blue – Agents move to a random location if they are unhappy Agents are happy unless <k neighbors are the same color they are (k= i.e., they prefer not to be in a small minority – What’s the result over time? helling/ helling/