1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.

Slides:



Advertisements
Similar presentations
St. Edward’s University
Advertisements

1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edwards University.
Chapter 3 - Part A Descriptive Statistics: Numerical Methods
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Descriptive Statistics
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Calculating & Reporting Healthcare Statistics
Chapter 3 Describing Data Using Numerical Measures
Descriptive Statistics – Central Tendency & Variability Chapter 3 (Part 2) MSIS 111 Prof. Nick Dedeke.
B a c kn e x t h o m e Parameters and Statistics statistic A statistic is a descriptive measure computed from a sample of data. parameter A parameter is.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Intro to Descriptive Statistics
Slides by JOHN LOUCKS St. Edward’s University.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 3-1 Introduction to Statistics Chapter 3 Using Statistics to summarize.
Chapter 3, Part 1 Descriptive Statistics II: Numerical Methods
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 3 Describing Data Using Numerical Measures.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
The arithmetic mean of a variable is computed by determining the sum of all the values of the variable in the data set divided by the number of observations.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 3 – Descriptive Statistics
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
Measures of Central Tendency and Dispersion Preferred measures of central location & dispersion DispersionCentral locationType of Distribution SDMeanNormal.
1 1 Slide © 2003 Thomson/South-Western. 2 2 Slide © 2003 Thomson/South-Western Chapter 3 Descriptive Statistics: Numerical Methods Part A n Measures of.
1 1 Slide Descriptive Statistics: Numerical Measures Location and Variability Chapter 3 BA 201.
Chapter 3 Descriptive Statistics: Numerical Methods Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
Descriptive Statistics: Numerical Methods
STAT 280: Elementary Applied Statistics Describing Data Using Numerical Measures.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 3-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western/Thomson Learning.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 3 Descriptive Statistics: Numerical Methods.
Lecture 3 Describing Data Using Numerical Measures.
Understanding Basic Statistics Fourth Edition By Brase and Brase Prepared by: Lynn Smith Gloucester County College Chapter Three Averages and Variation.
Chap 3-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 3 Describing Data Using Numerical.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Chapter 3, Part A Descriptive Statistics: Numerical Measures n Measures of Location n Measures of Variability.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Describing Data Descriptive Statistics: Central Tendency and Variation.
BIA 2610 – Statistical Methods Chapter 3 – Descriptive Statistics: Numerical Measures.
Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 3-1 Business Statistics, 4e by Ken Black Chapter 3 Descriptive Statistics.
Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2003 South-Western/Thomson Learning TM Chapter 3 Descriptive Statistics: Numerical Methods n Measures of Variability n Measures of Relative.
CHAPTER 2: Basic Summary Statistics
1 STAT 500 – Statistics for Managers STAT 500 Statistics for Managers.
Chapter 3 Descriptive Statistics: Numerical Methods.
Statistics -Descriptive statistics 2013/09/30. Descriptive statistics Numerical measures of location, dispersion, shape, and association are also used.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
St. Edward’s University
Chapter 3 Describing Data Using Numerical Measures
Chapter 3 Descriptive Statistics: Numerical Measures Part A
St. Edward’s University
St. Edward’s University
Numerical Measures: Centrality and Variability
Descriptive Statistics
Chapter 3 Describing Data Using Numerical Measures
St. Edward’s University
Essentials of Statistics for Business and Economics (8e)
St. Edward’s University
Econ 3790: Business and Economics Statistics
Presentation transcript:

1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Slides by John Loucks St. Edward’s University

2 2 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter 3, Part A Descriptive Statistics: Numerical Measures n Measures of Location n Measures of Variability

3 3 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Measures of Location If the measures are computed for data from a sample, for data from a sample, they are called sample statistics. If the measures are computed for data from a population, for data from a population, they are called population parameters. A sample statistic is referred to as the point estimator of the corresponding population parameter. n Mean n Median n Mode n Percentiles n Quartiles

4 4 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Mean n The mean of a data set is the average of all the data values. The sample mean is the point estimator of the population mean . The sample mean is the point estimator of the population mean . n Perhaps the most important measure of location is the mean. n The mean provides a measure of central location.

5 5 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Sample Mean Number of observations in the sample Number of observations in the sample Sum of the values of the n observations Sum of the values of the n observations

6 6 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Population Mean  Number of observations in the population Number of observations in the population Sum of the values of the N observations Sum of the values of the N observations

7 7 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Seventy efficiency apartments were randomly Seventy efficiency apartments were randomly sampled in a small college town. The monthly rent prices for these apartments are listed below. Sample Mean Example: Apartment Rents Example: Apartment Rents

8 8 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Sample Mean Example: Apartment Rents Example: Apartment Rents

9 9 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Median Whenever a data set has extreme values, the median Whenever a data set has extreme values, the median is the preferred measure of central location. is the preferred measure of central location. A few extremely large incomes or property values A few extremely large incomes or property values can inflate the mean. can inflate the mean. The median is the measure of location most often The median is the measure of location most often reported for annual income and property value data. reported for annual income and property value data. The median of a data set is the value in the middle The median of a data set is the value in the middle when the data items are arranged in ascending order. when the data items are arranged in ascending order.

10 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Median For an odd number of observations: For an odd number of observations: in ascending order observations the median is the middle value. Median = 19

11 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part Median For an even number of observations: For an even number of observations: in ascending order observations the median is the average of the middle two values. Median = ( )/2 =

12 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Median Averaging the 35th and 36th data values: Median = ( )/2 = 475 Note: Data is in ascending order. Example: Apartment Rents Example: Apartment Rents

13 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Trimmed Mean It is obtained by deleting a percentage of the It is obtained by deleting a percentage of the smallest and largest values from a data set and then smallest and largest values from a data set and then computing the mean of the remaining values. computing the mean of the remaining values. For example, the 5% trimmed mean is obtained by For example, the 5% trimmed mean is obtained by removing the smallest 5% and the largest 5% of the removing the smallest 5% and the largest 5% of the data values and then computing the mean of the data values and then computing the mean of the remaining values. remaining values. Another measure, sometimes used when extreme Another measure, sometimes used when extreme values are present, is the trimmed mean. values are present, is the trimmed mean.

14 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Mode The mode of a data set is the value that occurs with The mode of a data set is the value that occurs with greatest frequency. greatest frequency. The greatest frequency can occur at two or more The greatest frequency can occur at two or more different values. different values. If the data have exactly two modes, the data are If the data have exactly two modes, the data are bimodal. bimodal. If the data have more than two modes, the data are If the data have more than two modes, the data are multimodal. multimodal. Caution: If the data are bimodal or multimodal, Caution: If the data are bimodal or multimodal, Excel’s MODE function will incorrectly identify a Excel’s MODE function will incorrectly identify a single mode. single mode.

15 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Mode 450 occurred most frequently (7 times) Mode = 450 Note: Data is in ascending order. Example: Apartment Rents Example: Apartment Rents

16 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Percentiles A percentile provides information about how the A percentile provides information about how the data are spread over the interval from the smallest data are spread over the interval from the smallest value to the largest value. value to the largest value. Admission test scores for colleges and universities Admission test scores for colleges and universities are frequently reported in terms of percentiles. are frequently reported in terms of percentiles. n The p th percentile of a data set is a value such that at least p percent of the items take on this value or less and at least (100 - p ) percent of the items take on this value or more.

17 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Percentiles Arrange the data in ascending order. Arrange the data in ascending order. Compute index i, the position of the p th percentile. Compute index i, the position of the p th percentile. i = ( p /100) n If i is not an integer, round up. The p th percentile If i is not an integer, round up. The p th percentile is the value in the i th position. is the value in the i th position. If i is not an integer, round up. The p th percentile If i is not an integer, round up. The p th percentile is the value in the i th position. is the value in the i th position. If i is an integer, the p th percentile is the average If i is an integer, the p th percentile is the average of the values in positions i and i +1. of the values in positions i and i +1. If i is an integer, the p th percentile is the average If i is an integer, the p th percentile is the average of the values in positions i and i +1. of the values in positions i and i +1.

18 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. 80 th Percentile i = ( p /100) n = (80/100)70 = 56 Averaging the 56 th and 57 th data values: 80th Percentile = ( )/2 = 542 Note: Data is in ascending order. Example: Apartment Rents Example: Apartment Rents

19 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. 80 th Percentile “At least 80% of the items take on a items take on a value of 542 or less.” “At least 20% of the items take on a value of 542 or more.” 56/70 =.8 or 80%14/70 =.2 or 20% Example: Apartment Rents Example: Apartment Rents

20 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Quartiles Quartiles are specific percentiles. Quartiles are specific percentiles. First Quartile = 25th Percentile First Quartile = 25th Percentile Second Quartile = 50th Percentile = Median Second Quartile = 50th Percentile = Median Third Quartile = 75th Percentile Third Quartile = 75th Percentile

21 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Third Quartile Third quartile = 75th percentile i = ( p /100) n = (75/100)70 = 52.5 = 53 Third quartile = 525 Note: Data is in ascending order. Example: Apartment Rents Example: Apartment Rents

22 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Measures of Variability It is often desirable to consider measures of variability It is often desirable to consider measures of variability (dispersion), as well as measures of location. (dispersion), as well as measures of location. For example, in choosing supplier A or supplier B we For example, in choosing supplier A or supplier B we might consider not only the average delivery time for might consider not only the average delivery time for each, but also the variability in delivery time for each. each, but also the variability in delivery time for each.

23 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Measures of Variability Range Range Interquartile Range Interquartile Range Variance Variance Standard Deviation Standard Deviation Coefficient of Variation Coefficient of Variation

24 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Range The range of a data set is the difference between the The range of a data set is the difference between the largest and smallest data values. largest and smallest data values. It is the simplest measure of variability. It is the simplest measure of variability. It is very sensitive to the smallest and largest data It is very sensitive to the smallest and largest data values. values.

25 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Range Range = largest value - smallest value Range = = 190 Note: Data is in ascending order. Example: Apartment Rents Example: Apartment Rents

26 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Interquartile Range The interquartile range of a data set is the difference The interquartile range of a data set is the difference between the third quartile and the first quartile. between the third quartile and the first quartile. It is the range for the middle 50% of the data. It is the range for the middle 50% of the data. It overcomes the sensitivity to extreme data values. It overcomes the sensitivity to extreme data values.

27 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Interquartile Range 3rd Quartile ( Q 3) = 525 1st Quartile ( Q 1) = 445 Interquartile Range = Q 3 - Q 1 = = 80 Note: Data is in ascending order. Example: Apartment Rents Example: Apartment Rents

28 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The variance is a measure of variability that utilizes The variance is a measure of variability that utilizes all the data. all the data. Variance It is based on the difference between the value of It is based on the difference between the value of each observation ( x i ) and the mean ( for a sample, each observation ( x i ) and the mean ( for a sample,  for a population).  for a population). The variance is useful in comparing the variability The variance is useful in comparing the variability of two or more variables. of two or more variables.

29 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Variance The variance is computed as follows: The variance is computed as follows: The variance is the average of the squared The variance is the average of the squared differences between each data value and the mean. differences between each data value and the mean. The variance is the average of the squared The variance is the average of the squared differences between each data value and the mean. differences between each data value and the mean. for a sample population

30 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Standard Deviation The standard deviation of a data set is the positive The standard deviation of a data set is the positive square root of the variance. square root of the variance. It is measured in the same units as the data, making It is measured in the same units as the data, making it more easily interpreted than the variance. it more easily interpreted than the variance.

31 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The standard deviation is computed as follows: The standard deviation is computed as follows: for a sample population Standard Deviation

32 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The coefficient of variation is computed as follows: The coefficient of variation is computed as follows: Coefficient of Variation The coefficient of variation indicates how large the The coefficient of variation indicates how large the standard deviation is in relation to the mean. standard deviation is in relation to the mean. The coefficient of variation indicates how large the The coefficient of variation indicates how large the standard deviation is in relation to the mean. standard deviation is in relation to the mean. for a sample population

33 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. the standard deviation is about 11% of the mean Variance Variance Standard Deviation Standard Deviation Coefficient of Variation Coefficient of Variation Sample Variance, Standard Deviation, And Coefficient of Variation Example: Apartment Rents Example: Apartment Rents

34 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. End of Chapter 3, Part A