Binary Trees, Binary Search Trees CMPS 2133 Spring 2008.

Slides:



Advertisements
Similar presentations
Trees Types and Operations
Advertisements

Binary Trees, Binary Search Trees COMP171 Fall 2006.
CS 171: Introduction to Computer Science II
Trees, Binary Trees, and Binary Search Trees COMP171.
Trees, Binary Trees, and Binary Search Trees. 2 Trees * Linear access time of linked lists is prohibitive n Does there exist any simple data structure.
1 Trees. 2 Outline –Tree Structures –Tree Node Level and Path Length –Binary Tree Definition –Binary Tree Nodes –Binary Search Trees.
Lec 15 April 9 Topics: l binary Trees l expression trees Binary Search Trees (Chapter 5 of text)
1 Trees Linear access time of linked lists is prohibitive –Does there exist any simple data structure for which the running time of most operations (search,
CSC 2300 Data Structures & Algorithms February 6, 2007 Chapter 4. Trees.
Version TCSS 342, Winter 2006 Lecture Notes Trees Binary Trees Binary Search Trees.
Advanced Algorithms Analysis and Design Lecture 8 (Continue Lecture 7…..) Elementry Data Structures By Engr Huma Ayub Vine.
Lecture Objectives  To learn how to use a tree to represent a hierarchical organization of information  To learn how to use recursion to process trees.
Lecture 10 Trees –Definiton of trees –Uses of trees –Operations on a tree.
Spring 2010CS 2251 Trees Chapter 6. Spring 2010CS 2252 Chapter Objectives Learn to use a tree to represent a hierarchical organization of information.
1 Trees A tree is a data structure used to represent different kinds of data and help solve a number of algorithmic problems Game trees (i.e., chess ),
CMSC 341 Introduction to Trees. 8/3/2007 UMBC CMSC 341 TreeIntro 2 Tree ADT Tree definition  A tree is a set of nodes which may be empty  If not empty,
DATA STRUCTURES AND ALGORITHMS Lecture Notes 5 Prepared by İnanç TAHRALI.
Tree (new ADT) Terminology:  A tree is a collection of elements (nodes)  Each node may have 0 or more successors (called children)  How many does a.
Binary Trees, Binary Search Trees RIZWAN REHMAN CENTRE FOR COMPUTER STUDIES DIBRUGARH UNIVERSITY.
Tree Data Structures.
Data Structures and Algorithm Analysis Trees Lecturer: Jing Liu Homepage:
Trees, Binary Trees, and Binary Search Trees COMP171.
Starting at Binary Trees
Trees  Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search,
Lec 15 Oct 18 Binary Search Trees (Chapter 5 of text)
Preview  Graph  Tree Binary Tree Binary Search Tree Binary Search Tree Property Binary Search Tree functions  In-order walk  Pre-order walk  Post-order.
CE 221 Data Structures and Algorithms Chapter 4: Trees (Binary) Text: Read Weiss, §4.1 – 4.2 1Izmir University of Economics.
Tree Traversals, TreeSort 20 February Expression Tree Leaves are operands Interior nodes are operators A binary tree to represent (A - B) + C.
Chapter 4: Trees Part I: General Tree Concepts Mark Allen Weiss: Data Structures and Algorithm Analysis in Java.
Introduction to Trees IT12112 Lecture 05 Introduction Tree is one of the most important non-linear data structures in computing. It allows us to implement.
Trees By P.Naga Srinivasu M.tech,(MBA). Basic Tree Concepts A tree consists of finite set of elements, called nodes, and a finite set of directed lines.
CMSC 341 Introduction to Trees. 2/21/20062 Tree ADT Tree definition –A tree is a set of nodes which may be empty –If not empty, then there is a distinguished.
CISC 235 Topic 3 General Trees, Binary Trees, Binary Search Trees.
Binary Tree. Some Terminologies Short review on binary tree Tree traversals Binary Search Tree (BST)‏ Questions.
1 Chapter 4 Trees Basic concept How tree are used to implement the file system How tree can be used to evaluate arithmetic expressions How to use trees.
Binary Search Trees (BST)
Rooted Tree a b d ef i j g h c k root parent node (self) child descendent leaf (no children) e, i, k, g, h are leaves internal node (not a leaf) sibling.
24 January Trees CSE 2011 Winter Trees Linear access time of linked lists is prohibitive  Does there exist any simple data structure for.
1 Trees General Trees  Nonrecursive definition: a tree consists of a set of nodes and a set of directed edges that connect pairs of nodes.
1 Joe Meehean. A A B B D D I I C C E E X X A A B B D D I I C C E E X X  Terminology each circle is a node pointers are edges topmost node is the root.
CMSC 202, Version 5/02 1 Trees. CMSC 202, Version 5/02 2 Tree Basics 1.A tree is a set of nodes. 2.A tree may be empty (i.e., contain no nodes). 3.If.
BINARY TREES Objectives Define trees as data structures Define the terms associated with trees Discuss tree traversal algorithms Discuss a binary.
TREES General trees Binary trees Binary search trees AVL trees Balanced and Threaded trees.
Trees By JJ Shepherd. Introduction Last time we discussed searching and sorting in a more efficient way Divide and Conquer – Binary Search – Merge Sort.
Trees CSIT 402 Data Structures II 1. 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical.
1 Trees. 2 Trees Trees. Binary Trees Tree Traversal.
Tree Representation and Terminology Binary Trees Binary Search Trees Pointer-Based Representation of a Binary Tree Array-Based Representation of a Binary.
DS.T.1 Trees Chapter 4 Overview Tree Concepts Traversals Binary Trees Binary Search Trees AVL Trees Splay Trees B-Trees.
CSE 373 Data Structures Lecture 7
CS 201 Data Structures and Algorithms
BCA-II Data Structure Using C
Binary Search Tree (BST)
Csc 2720 Instructor: Zhuojun Duan
ITEC 2620M Introduction to Data Structures
TREE DATA STRUCTURE Data Structure 21-Sep-18 Tree
Binary Search Trees Why this is a useful data structure. Terminology
Binary Trees, Binary Search Trees
Chapter 22 : Binary Trees, AVL Trees, and Priority Queues
TREES General trees Binary trees Binary search trees AVL trees
CS223 Advanced Data Structures and Algorithms
Introduction to Trees IT12112 Lecture 05.
Trees, Binary Trees, and Binary Search Trees
Lec 12 March 9, 11 Mid-term # 1 (March 21?)
Trees.
CE 221 Data Structures and Algorithms
Data Structures and Algorithm Analysis Trees
Binary Trees, Binary Search Trees
CE 221 Data Structures and Algorithms
Trees.
Binary Trees, Binary Search Trees
Presentation transcript:

Binary Trees, Binary Search Trees CMPS 2133 Spring 2008

Binary Search Trees / Slide 2 Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete) is O(log N)?

Binary Search Trees / Slide 3 Trees A tree is a collection of nodes The collection can be empty (recursive definition) If not empty, a tree consists of a distinguished node r (the root), and zero or more nonempty subtrees T 1, T 2,...., T k, each of whose roots are connected by a directed edge from r

Binary Search Trees / Slide 4 Some Terminologies Child and parent Every node except the root has one parent A node can have an arbitrary number of children Leaves Nodes with no children Sibling nodes with same parent

Binary Search Trees / Slide 5 Some Terminologies Path Length number of edges on the path Depth of a node length of the unique path from the root to that node The depth of a tree is equal to the depth of the deepest leaf Height of a node length of the longest path from that node to a leaf all leaves are at height 0 The height of a tree is equal to the height of the root Ancestor and descendant Proper ancestor and proper descendant

Binary Search Trees / Slide 6 Example: UNIX Directory

Binary Search Trees / Slide 7 Binary Trees A tree in which no node can have more than two children The depth of an “average” binary tree is considerably smaller than N, eventhough in the worst case, the depth can be as large as N – 1.

Binary Search Trees / Slide 8 Example: Expression Trees Leaves are operands (constants or variables) The other nodes (internal nodes) contain operators Will not be a binary tree if some operators are not binary

Binary Search Trees / Slide 9 Tree traversal Used to print out the data in a tree in a certain order Pre-order traversal Print the data at the root Recursively print out all data in the left subtree Recursively print out all data in the right subtree

Binary Search Trees / Slide 10 Preorder, Postorder and Inorder Preorder traversal node, left, right prefix expression ++a*bc*+*defg

Binary Search Trees / Slide 11 Preorder, Postorder and Inorder Postorder traversal left, right, node postfix expression abc*+de*f+g*+ Inorder traversal left, node, right. infix expression a+b*c+d*e+f*g

Binary Search Trees / Slide 12 Preorder

Binary Search Trees / Slide 13 Postorder

Binary Search Trees / Slide 14 Preorder, Postorder and Inorder

Binary Search Trees / Slide 15 Binary Trees Possible operations on the Binary Tree ADT parent left_child, right_child sibling root, etc Implementation Because a binary tree has at most two children, we can keep direct pointers to them

Binary Search Trees / Slide 16 compare: Implementation of a general tree

Binary Search Trees / Slide 17 Binary Search Trees Stores keys in the nodes in a way so that searching, insertion and deletion can be done efficiently. Binary search tree property For every node X, all the keys in its left subtree are smaller than the key value in X, and all the keys in its right subtree are larger than the key value in X

Binary Search Trees / Slide 18 Binary Search Trees A binary search tree Not a binary search tree

Binary Search Trees / Slide 19 Binary search trees Average depth of a node is O(log N); maximum depth of a node is O(N) Two binary search trees representing the same set:

Binary Search Trees / Slide 20 Implementation

Binary Search Trees / Slide 21 Searching BST If we are searching for 15, then we are done. If we are searching for a key < 15, then we should search in the left subtree. If we are searching for a key > 15, then we should search in the right subtree.

Binary Search Trees / Slide 22

Binary Search Trees / Slide 23 Searching (Find) Find X: return a pointer to the node that has key X, or NULL if there is no such node Time complexity O(height of the tree)

Binary Search Trees / Slide 24 Inorder traversal of BST Print out all the keys in sorted order Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Binary Search Trees / Slide 25 findMin/ findMax Return the node containing the smallest element in the tree Start at the root and go left as long as there is a left child. The stopping point is the smallest element Similarly for findMax Time complexity = O(height of the tree)

Binary Search Trees / Slide 26 insert Proceed down the tree as you would with a find If X is found, do nothing (or update something) Otherwise, insert X at the last spot on the path traversed Time complexity = O(height of the tree)

Binary Search Trees / Slide 27 delete When we delete a node, we need to consider how we take care of the children of the deleted node. This has to be done such that the property of the search tree is maintained.

Binary Search Trees / Slide 28 delete Three cases: (1) the node is a leaf Delete it immediately (2) the node has one child Adjust a pointer from the parent to bypass that node

Binary Search Trees / Slide 29 delete (3) the node has 2 children replace the key of that node with the minimum element at the right subtree delete the minimum element Has either no child or only right child because if it has a left child, that left child would be smaller and would have been chosen. So invoke case 1 or 2. Time complexity = O(height of the tree)