Steady state impacts in inverse model parameter optimization Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G.J., Pereira, J.S., Berbigier, P., Carrara,

Slides:



Advertisements
Similar presentations
Regional trends in the land carbon cycle and the underlying mechanisms over the period, S. Sitch, P. Friedlingstein, G. Bonan, P. Canadell, P.
Advertisements

How will SWOT observations inform hydrology models?
A Simple Production Efficiency Model 1/18 Willem de Kooning ( ) A Tree in Naples.
DGVM runs for Trendy/RECCAP S. Sitch, P. Friedlingstein, A. Ahlström, A. Arneth, G. Bonan, P. Canadell, F. Chevallier, P. Ciais, C. Huntingford, C. D.,
Improving Understanding of Global and Regional Carbon Dioxide Flux Variability through Assimilation of in Situ and Remote Sensing Data in a Geostatistical.
Managed by UT-Battelle for the Department of Energy North American Carbon Balance – Results from the Regional Synthesis Project of the North America Carbon.
Monitoring Effects of Interannual Variation in Climate and Fire Regime on Regional Net Ecosystem Production with Remote Sensing and Modeling D.P. Turner.
US Carbon Trends March 17, USDA Greenhouse Gas Symposium1 Spatial and Temporal Patterns of the Contemporary Carbon Sources and Sinks in the Ridge.
W. McNair Bostick, Oumarou Badini, James W. Jones, Russell S. Yost, Claudio O. Stockle, and Amadou Kodio Ensemble Kalman Filter Estimation of Soil Carbon.
Increasing Wetland Emissions of Methane From A Warmer Artic: Do we See it Yet? Lori Bruhwiler and Ed Dlugokencky Earth System Research Laboratory Boulder,
Uncertainty in eddy covariance datasets Dario Papale, Markus Reichstein, Antje Moffat, Ankur Desai, many others..
Development of a mechanistic model of Hg in the terrestrial biosphere Nicole Smith-Downey Harvard University GEOS-Chem Users Meting April 12, 2007.
Management impacts on the C balance in agricultural ecosystems Jean-François Soussana 1 Martin Wattenbach 2, Pete Smith 2 1. INRA, Clermont-Ferrand, France.
GERFS1 Top-down approach to estimation of the regional carbon budget in West Siberia S. Maksyutov (1) T. Machida, K. Shimoyama, N.Kadygrov, A. Itoh (1)
Simulations of carbon transport in CCM3: uncertainties in C sinks due to interannual variability and model resolution James Orr (LSCE/CEA-CNRS and IPSL,
Prabir K. Patra Acknowledgments: S. Maksyutov, K. Gurney and TransCom-3 modellers TransCom Meeting, Paris; June 2005 Sensitivity CO2 sources and.
Evaluating the Impact of the Atmospheric “ Chemical Pump ” on CO 2 Inverse Analyses P. Suntharalingam GEOS-CHEM Meeting, April 4-6, 2005 Acknowledgements.
Biosphere Modeling Galina Churkina MPI for Biogeochemistry.
NOCES meeting Plymouth, 2005 June Top-down v.s. bottom-up estimates of air-sea CO 2 fluxes : No winner so far … P. Bousquet, A. Idelkadi, C. Carouge,
A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere- biosphere CO 2 exchanges and their uncertainties Marko Scholze 1, Peter Rayner.
Evaluating the Role of the CO 2 Source from CO Oxidation P. Suntharalingam Harvard University TRANSCOM Meeting, Tsukuba June 14-18, 2004 Collaborators.
Improving and extending CMS land surface carbon flux products including estimates of uncertainties in fluxes and biomass. Jim Collatz, Randy Kawa, Lesley.
Assimilating observed seasonal cycles of CO2 to CASA model parameters
Impact of Reduced Carbon Oxidation on Atmospheric CO 2 : Implications for Inversions P. Suntharalingam TransCom Meeting, June 13-16, 2005 N. Krakauer,
GEOS-CARB: A Framework for Monitoring Carbon Concentrations and Fluxes Steven Pawson 1, Lesley Ott 1, David Baker 2, George J. Collatz 1, Janusz Eluszkiewicz.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY 1 Carbon Cycle Modeling Terrestrial Ecosystem Models W.M. Post, ORNL Atmospheric Measurements.
Raw data Hz HH data submitted for synthesis Flux calculation, raw data filtering Additional filtering for footprint or instrument malfunctioning.
Trends in Terrestrial Carbon Sinks Driven by Hydroclimatic Change since 1948: Data-Driven Analysis using FLUXNET Trends in Terrestrial Carbon Sinks Driven.
Fires and the Contemporary Global Carbon Cycle Guido van der Werf (Free University, Amsterdam, Netherlands) In collaboration with: Jim Randerson (UCI,
with contributions of 40+ research groups
Optimising ORCHIDEE simulations at tropical sites Hans Verbeeck LSM/FLUXNET meeting June 2008, Edinburgh LSCE, Laboratoire des Sciences du Climat et de.
Laboratoire des Sciences du Climat et de l'Environnement P. Peylin, C. Bacour, P. Ciais, H. Verbeek, P. Rayner Flux data to highlight model deficiencies.
Field Measurement Networks D. Hollinger, E. LaPoint, R. Birdsey, L. Heath U.S. North American Carbon Program (NACP) Investigators Meeting, January 22-24,
Christian Beer, CE-IP Crete 2006 Mean annual GPP of Europe derived from its water balance Christian Beer 1, Markus Reichstein 1, Philippe Ciais 2, Graham.
Data assimilation in land surface schemes Mathew Williams University of Edinburgh.
Page 1© Crown copyright WP4 Development of a System for Carbon Cycle Data Assimilation Richard Betts.
Antwerp march A Bottom-up Approach to Characterize Crop Functioning From VEGETATION Time series Toulouse, France Bucharest, Fundulea, Romania.
CO over South America Modeling inter annual variability of biomass burning emissions Pim Hooghiemstra & Maarten Krol 28 November 2011 – TM meeting.
Results from the Carbon Cycle Data Assimilation System (CCDAS) 3 FastOpt 4 2 Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1 Heinrich Widmann 3, Thomas.
The Big Picture To assess the Global Carbon Budget we need information that is ‘Everywhere, All of the Time’ Many Complementary Methods exist, Each with.
Translation to the New TCO Panel Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling Markus Reichstein, Dario Papale Biogeochemical Model-Data-Integration.
Integration of biosphere and atmosphere observations Yingping Wang 1, Gabriel Abramowitz 1, Rachel Law 1, Bernard Pak 1, Cathy Trudinger 1, Ian Enting.
Some challenges of model-data- integration a collection of issues and ideas based on model evaluation excercises Martin Jung, Miguel Mahecha, Markus Reichstein,
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
Development of an EnKF to estimate CO 2 fluxes from realistic distributions of X CO2 Liang Feng, Paul Palmer
Impacts of leaf phenology and water table on interannual variability of carbon fluxes in subboreal uplands and wetlands Implications for regional fluxes.
Ecosystem component Activity 1.6 Grasslands and wetlands Jean-François Soussana Katja Klumpp, Nicolas Vuichard INRA, Clermont-Ferrand, France CarboEurope,
Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands Tan Kun.
Change in vegetation growth and C balance in the Tibetan Plateau
Ecosystem component Activity 1.6 Grasslands and wetlands Jean-François Soussana Katja Klumpp, Nicolas Vuichard INRA, Clermont-Ferrand, France CarboEurope,
Inferring terrestrial CO 2 fluxes from a global-scale Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze 1, Peter Rayner 2, Wolfgang Knorr 1,
Quantitative network design for biosphere model process parameters E. Koffi 1, P. Rayner 1, T. Kaminski 2, M. Scholze 3, M. Voßbeck 2, and R. Giering 2.
Using data assimilation to improve estimates of C cycling Mathew Williams School of GeoScience, University of Edinburgh.
Biases in land surface models Yingping Wang CSIRO Marine and Atmospheric Research.
Spatial Processes and Land-atmosphere Flux Constraining ecosystem models with regional flux tower data assimilation Flux Measurements and Advanced Modeling,
CarboEurope: The Big Research Lines Annette Freibauer Ivan Janssens.
Edinburgh, June 2008Markus Reichstein Critical issues when using flux data for reducing Land Surfcace Model uncertainties – towards full uncertainty accounting?
ICDC7, Boulder September 2005 Estimation of atmospheric CO 2 from AIRS infrared satellite radiances in the ECMWF data assimilation system Richard.
Slide -1 (Announcement) Breakout group “Against physical degradation of scientists” Where? Soccer field of Kalimera Hotel When? Friday, 5 pm (after plenary)
Success and Failure of Implementing Data-driven Upscaling Using Flux Networks and Remote Sensing Jingfeng Xiao Complex Systems Research Center, University.
FastOpt CAMELS A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr 1, Marko Scholze 2, Peter Rayner 3,Thomas Kaminski 4, Ralf.
Taskforce IV: Treatment, quantification and integration of uncertainties in CarboEurope-IP Component uncertainties (Inventory, Eddy fluxes, Atmosphere.
Whats new with MODIS NPP and GPP MODIS/VIIRS Science Team Meeting May 20, 2015 Steven W. Running Numerical Terradynamic Simulation Group College of Forestry.
Arctic RIMS & WALE (Regional, Integrated Hydrological Monitoring System & Western Arctic Linkage Experiment) John Kimball FaithAnn Heinsch Steve Running.
Role of ECVs in climate-carbon feedback assessment Claire Magand Patricia Cadule, Jean-Louis Dufresne Institut Pierre Simon Laplace CMUG Integration Meeting,
Jean-François Exbrayat1 T.L. Smallman1, A.A. Bloom2, M. Williams1
Coherence of parameters governing NEE variability in eastern U. S
Presentation transcript:

steady state impacts in inverse model parameter optimization Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G.J., Pereira, J.S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., Rambal, S., Sanz, M.J., and Valentini, R.(2008), Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval, Global Biogeochem. Cycles, 22, GB2007, doi: /2007GB

motivation / goals CASA model parameter optimization spin-up routines force soil C pools estimates impacts of the steady state in: –model performance –parameter estimates / constraints propagation of C fluxes estimates uncertainties for the Iberian Peninsula

the CASA model Potter et al., 1993

=C ss ∙ η∙ ηC ns inclusion of a parameter that relaxed the steady state approach: η approach to relax the steady state approach Fix Steady State Relaxed Steady State

experiment design significance of each parameter: –removing one parameter at a time; alternatives to η : –replacing by : soil C turnover rates; extra parameters on NPP and Rh temperature sensitivity. Levenberg-Marquardt least squares optimization

site selection and data CARBOEUROPE-IP: –10 Sites optimization constraints: NEP model drivers: –site meteorological data; –remotely sensed f APAR and LAI; –different temporal resolutions

effect of η in optimization adding η IT-Non [sink: 542gC m -2 yr -1 ]

determinants of parameter variability: ANOVA site parameter vector temporal resolution site x parameter vector site x temporal resolution parameter vector x temporal resolution

what drives η ? r 2 : 0.76; α < 0.001

model performance improvements model performance in relaxed > fixed steady state assumptions.

differences in parameter estimates and constraints ε*ε* T opt BwεBwε Q 10 A ws relaxed fixed relaxed fixed ε*ε* T opt BwεBwε Q 10 A ws P/PP/P SE / SE ↑NPP ↓Rh

total soil C pools relaxedfixed measurements

steady state approach impacts model performance – relaxed > fixed parameter estimates – biases parameter uncertainties – relaxed < fixed soil C pools estimates – relaxed closer to measurements

propagating parameters / uncertainties

spatial simulations Iberian Peninsula optimized parameters per site: –optimization: naïve bootstrap approach no assumption on parameters distribution –GIMMS NDVIg : 8km, biweekly; parameter propagation per PFT: –estimating NEP / NPP / Rh

spatial impacts : NPP 1991 relaxedfixedrelaxed - fixed

seasonality : NPP : IP relaxed versus fixed

iav : NEP : IP relaxed versus fixed

seasonality and iav : IP var. inter annual variability seasonal amplitude uncertainties Minmaxminmaxminmax NPP-9%62%-11%53%-60%-2% Rh-15%74%-39%131%-60%-2% NEP-10%63%-10%91%-60%6% (relax – fix) / fix

remarks biases in optimized parameters lead to significant differences in flux estimates: seasonality and iav uncertainties propagation show significant reductions under relaxed steady state approaches impacts in data assimilation schemes