Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.

Slides:



Advertisements
Similar presentations
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Advertisements

Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
A New A-Train Collocated Product : MODIS and OMI cloud data on the OMI footprint Brad Fisher 1, Joanna Joiner 2, Alexander Vasilkov 1, Pepijn Veefkind.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
This document is proprietary. Any dispatch or disclosure of content is authorized only after written authorization by MEEO S.r.l. 1 PM MAPPER®: An air.
Liang APEIS Capacity Building Workshop on Integrated Environmental Monitoring of Asia-Pacific Region September 2002, Beijing,, China Atmospheric.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
Rutherford Appleton Laboratory 5th ADIENT Meeting 2 nd April 2009, Manchester University WP4.3.1 Comparisons of model simulations with global radiance.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Quantifying aerosol direct radiative effect with MISR observations Yang Chen, Qinbin Li, Ralph Kahn Jet Propulsion Laboratory California Institute of Technology,
Xin Kong, Lizzie Noyes, Gary Corlett, John Remedios, Simon Good and David Llewellyn-Jones Earth Observation Science, Space Research Centre, University.
GOES-R AEROSOL PRODUCTS AND AND APPLICATIONS APPLICATIONS Ana I. Prados, S. Kondragunta, P. Ciren R. Hoff, K. McCann.
Assimilation of Aerosol Optical Depth Gé Verver 1, Bas Henzing 1, Peter van Velthoven 1 Cristina Robles-Gonzalez 2, Gerrit de Leeuw 2 1 KNMI, De Bilt,
Development of the SEVIRI Aerosol Retrieval Algorithm (SARA) Aerosol retrievals using MSG-SEVIRI images Y.S. Bennouna and G. de Leeuw.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
Reflected Solar Radiative Kernels And Applications Zhonghai Jin Constantine Loukachine Bruce Wielicki Xu Liu SSAI, Inc. / NASA Langley research Center.
Visible Satellite Imagery Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of NASA Applied Sciences Week –
Dust Detection in MODIS Image Spectral Thresholds based on Zhao et al., 2010 Pawan Gupta NASA Goddard Space Flight Center GEST/University of Maryland Baltimore.
Quick Review of Remote Sensing Basic Theory Paolo Antonelli CIMSS University of Wisconsin-Madison Benevento, June 2007.
Aerosol-cci: WP2220: Cloud mask comparison Gerrit de Leeuw.
CDOP NWC SAF Workshop on Physical Retrieval of Clear Air Parameters from SEVIRI, 11 /2007 “Overview about MERIS NRT WV product utilizing WV absorption.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
Determination of the optical thickness and effective radius from reflected solar radiation measurements David Painemal MPO531.
Developing a High Spatial Resolution Aerosol Optical Depth Product Using MODIS Data to Evaluate Aerosol During Large Wildfire Events STI-5701 Jennifer.
DUP-TEMIS WP2.6 Regional Aerosol Gerrit de Leeuw, FMI/UHEL/TNO Pekka Kolmonen, FMI Robin Schoemaker, TNO.
Orbit Characteristics and View Angle Effects on the Global Cloud Field
Earth Observation Science Recent and potential scientific achievements of the (A)ATSR Series - and some possibilities for synergy with MERIS David Llewellyn-Jones.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
AMFIC: Aerosol retrieval Gerrit de Leeuw, FMI/UHEL/TNO Pekka Kolmonen, FMI Anu-Maija Sundström, UHEL Larisa Sogacheva, UHEL Juha-Pekka Luntama, FMI Sini.
TEMPO & GOES-R synergy update and GEO-TASO aerosol retrieval for TEMPO Jun Wang Xiaoguang Xu, Shouguo Ding, Cui Ge University of Nebraska-Lincoln Robert.
1 Applications of Remote Sensing: SeaWiFS and MODIS Ocean Color Outline  Physical principles behind the remote sensing of ocean color parameters  Satellite.
AMFIC third progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
MERIS US Workshop, Silver Springs, 14 th July 2008 MERIS US Workshop, 14 July 2008, Washington (USA) Henri LAUR Envisat Mission Manager.
Significant contributions from: Todd Schaack and Allen Lenzen (UW-Madison, Space Science and Engineering Center) Mark C. Green (Desert Research Institute)
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Aerosol Optical Depth during the Northern CA Fires of 2008 In situ aerosol light scattering and absorption measurements in Reno Nevada, 2008, indicated.
DEVELOPING HIGH RESOLUTION AOD IMAGING COMPATIBLE WITH WEATHER FORECAST MODEL OUTPUTS FOR PM2.5 ESTIMATION Daniel Vidal, Lina Cordero, Dr. Barry Gross.
Monitoring aerosols in China with AATSR Anu-Maija Sundström 2 Gerrit de Leeuw 1 Pekka Kolmonen 1, and Larisa Sogacheva 1 AMFIC , Barcelona 1:
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET) Thomas F. Eck (Code 618 NASA GSFC) and Brent N. Holben (Code.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28, 2011 to provide various atmospheric and land related environmental.
Daily observation of dust aerosols infrared optical depth and altitude from IASI and AIRS and comparison with other satellite instruments Christoforos.
SEMIANALYTICAL CLOUD RETRIEVAL ALGORITHM AND ITS APPLICATION TO DATA FROM MULTIPLE OPTICAL INSTRUMENTS ON SPACEBORNE PLATFORMS: SCIAMACHY, MERIS, MODIS,
Estimation of Potential Evapotranspiration from Merged CERES and MODIS Observations Anand Inamdar & A. French Arid Land Agricultural Research Center (ALARC/ARS/USDA)
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Data acquisition From satellites with the MODIS instrument.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Analysis of satellite imagery to map burned areas in Sub-Saharan Africa CARBOAFRICA conference “Africa and Carbon Cycle: the CarboAfrica project” Accra.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
Pushing the limits of dark-target aerosol remote sensing from MODIS Robert C. Levy (SSAI and 613.2) Contributors: S. Mattoo (SSAI), L. Remer (NASA), R.
NASA, CGMS-44, 7 June 2016 Coordination Group for Meteorological Satellites - CGMS LIMB CORRECTION OF POLAR- ORBITING IMAGERY FOR THE IMPROVED INTERPRETATION.
A-Train Symposium, April 19-21, 2017, Pasadena, CA
Extinction measurements
Dust detection methods applied to MODIS and VIIRS
SEVIRI Solar Channel Calibration system
Remote Sensing of Aerosols
Remote Sensing of Aerosols
Manik Bali Jonathan Mittaz
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ. of Helsinki, Dept. of Physics, Helsinki, Finland 3 TNO, Utrecht, Netherlands Retrieval of aerosol properties using AATSR

ATSR-2 (ERS-2): 1995 – AATSR (ENVISAT): 2002 – SLST (Sentinel 3) : 2013 – > 0.555, 0.659, 0.865, 1.6, 3.7, 11, 12 μm > 1 x 1 km 2 > 500 km swath (global in ~5 days) > 0.555, 0.659, 0.865, 1.6, 3.7, 11, 12 μm > 1 x 1 km 2 > 500 km swath (global in ~5 days) Aerosols/types; clouds ‘High’ resolution Along Track Scanning Radiometer - ATSR

Sun synchronous Equator overpass time 10:00 Swath 500km Spectral Channels IR: 1.6, 3.7, 10.85, and 12 μm VIS: 0.555, 0.67, and μm Spatial resolution 1 x 1 km Two viewing angles allow to account for surface effects on TOA radiation Over land the dual view aerosol retrieval algorithm (ADV) is used AATSR has two viewing angles; forward at 55°, and nadir

Basic concepts of the DV-algorithm TOA-reflectance for an underlying Lambertian surface Spectral and Directional information of ATSR-2 Shape of the BRDF independent of the wavelength Effects of aerosols small at 1.6 µm Bi-modal aerosol model Veefkind et al., GRL vol 25, no. 16, , 1998

Schematic representation of DV- and SV- algorithms Satellite observation: Instrument characteristics Calibration Cloud and surface effects Radiative Transfer Model : DAK (Double Adding KNMI) Optical properties aerosol Meteorology Actual retrieval SV: Over ocean

Crucial steps in aerosol retrieval Cloud screening: any residual cloud in a scene results in high AOD Surface contributions: Eliminate: multiple view Dark surface over ocean, with Ocean surface reflectance model Radiative transfer model Compare modeled reflectance at top of atmosphere with measurement ’Best fit’ provides desired aerosol parameters

Test for August 10 th 2004 Comparison with MODIS Cloud Protocol : 4 tests BT 12µm R 659 R 865nm /R 659 BT 12µm – BT 11µm Not always used Agreement: % Disagreement: % Non conclusive: 4.91 % AATSR CLOUD MASK CLEAR CLOUD AATSR CLOUD MASK CLEAR Cloud Screening

Aerosol models in ADV: based on AERONET observations Dubovik et al. 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J ATMOS SCI, 59 (3): Robles-Gonzalez et al. 2002, Aerosol properties over the Indian Ocean Experiment (INDOEX) campaign area retrieved from ATSR-2, J. Geophys. Res., 111, D15205, doi: /2005JD Levy et al. 2007: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210.

ADV Aerosol Remote Sensing Applications Europe: 2003, 2006, , yearly avarage (Pekka Kolmonen)

ADV Aerosol Remote Sensing Applications Europe: forest fires Iberian Peninsula, 11 August 2003 (Anu-Maija Sundström)

ADV Aerosol Remote Sensing Applications Europe: focus on Po Valley (TEMIS) 2003, yearly average (Pekka Kolmonen) 2003, July-August average 0.9

ADV Aerosol Remote Sensing Applications Europe: clean air over Finland 02 May 2006 (Larisa Sogacheva) 04 June 2008

ADV Aerosol Remote Sensing Applications Focus on China 0.55  m; 25 July 2008 Variability (0.55  m): March 2008 (Anu-Maija Sundström) 3.0

ADV Aerosol Remote Sensing Applications Focus on China (Anu-Maija Sundström)

ADV Aerosol Remote Sensing Applications Focus on China (Anu-Maija Sundström) Single overpass: 19Oct2008 Zoom over Beijing area

3 Aerosol Remote Sensing Applications Po Valley Regional: Europe Smoke Iberian Peninsula Finland: clean air Note scalesNote scales China, Beijing CONCLUSION: ADV works for very low AOD over Finland (~0.05) to very high AOD over China (~3)

Data sets Available: Europe 2003, 2006, 2008 Zoom on Po-Valley China 8 months in 2008, more to come Amazone: work in progress Africa, India, Brazil, Beijing: EUCAARI Development Countries: work in progress Ocean: AMARSI algo tested (AATSR / MERIS) and ready for use Global: MACC: 2 years, work in progress All AATSR data received on LTO tape (7/2002 – 4/2009)

Conclusions The AATSR Dual view algorithms works over land in a variety of conditions No a priori info on surface needed, but could improve the results Aerosol models through LUT approach; could be improved Some reasonable results have been obtained over the desert over the UAE (bright surface), but little or no dust Cloud screening reasonable, but may be further improved Dust detection often fails, a dust detection algorithm developed for SEVIRI over ocean (Bennouna et al., 2009, in press) is tested for AATSR

SEVIRI: Dust Retrieval over Ocean Bennouna et al., 2009, JGR Atmospheres, in press

Conclusions AATSR data archive (7/2002-4/2009) received and read NRT under development: Uses rolling archive Long time series: ATSR-2 – AATSR – SLSTA (1995 – present >) Problems: AATSR swath limits coverage Clouds Snow

Use of AATSR data in GLOBemissions Data assimilation: data interval too long (3 days at mid latitudes or more when clouds) Hotspot detection Localized sources, such as: Forest fire emissions Power plants (needed for inventories) Inversion? Advantage with respect to ’operational’ products: Choice of pixel size (1x1 km 2 or larger) Selection appropriate aerosol model