Example: Bradley Investments

Slides:



Advertisements
Similar presentations
1 1 Slide Introduction to Probability Probability Arithmetic and Conditional Probability Chapter 4 BA 201.
Advertisements

Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 3 Probability.
Introduction to Probability Experiments Counting Rules Combinations Permutations Assigning Probabilities.
Introduction to Probability
Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities and Assigning Probabilities n Events and Their Probability.
Chapter 4 Introduction to Probability
Chapter 4 Introduction to Probability
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Business and Finance College Principles of Statistics Eng. Heba Hamad
Introduction to probability BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
Introduction to Probability Uncertainty, Probability, Tree Diagrams, Combinations and Permutations Chapter 4 BA 201.
Example: An automobile manufacturer provides vehicles equipped with selected options. Each vehicle is ordered; - with or without an automatic transmission,
Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of.
Introduction to probability
Introduction to probability
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 4 __________________________ Introduction to Probability.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Events and their probability
Chapter 4: Probability (Cont.) In this handout: Venn diagrams Event relations Laws of probability Conditional probability Independence of events.
Chapter 4 Probability Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
The number of experiment outcomes
Basic Probability. Uncertainties Managers often base their decisions on an analysis of uncertainties such as the following: What are the chances that.
Introduction to Probability n Experiments and the Sample Space n Assigning Probabilities to Experimental Outcomes Experimental Outcomes n Events and Their.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide 統計學 Fall 2003 授課教師:統計系余清祥 日期: 2003 年 10 月 14 日 第五週:機率論介紹.
Unit 1 OUTCOMES AND LIKELIHOODS. Unit Essential Question: How do you determine, interpret, and apply principles of probability?
A.P. STATISTICS LESSON 6.3 ( DAY 2 ) GENERAL PROBABILITY RULES ( EXTENDED MULTIPLICATION RULES )
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
Business and Finance College Principles of Statistics Eng
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. Probability is a numerical measure of the likelihood Probability is a numerical measure of the.
1 Slide Slide Probability is conditional. Theorems of increase of probabilities. Theorems of addition of probabilities.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Introduction to Probability
1 1 Slide © 2003 Thomson/South-Western. 2 2 Slide © 2003 Thomson/South-Western Chapter 4 Introduction to Probability n Experiments, Counting Rules, and.
1 Chapter 4 – Probability An Introduction. 2 Chapter Outline – Part 1  Experiments, Counting Rules, and Assigning Probabilities  Events and Their Probability.
1 1 Slide © 2004 Thomson/South-Western Assigning Probabilities Classical Method Relative Frequency Method Subjective Method Assigning probabilities based.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities.
Probability Formulas The probability of more than one outcome. This is a union of the probabilities. If events are disjoint: If events are not disjoint:
1 1 Slide Introduction to Probability Assigning Probabilities and Probability Relationships Chapter 4 BA 201.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
BIA 2610 – Statistical Methods
AP Statistics Wednesday, 20 November 2015 OBJECTIVE TSW review for the test covering probability.
CHAPTER 3 PROBABILITY 3.1 Basic Concepts of Probability.
9.2 Connecting Probability to Models and Counting Remember to Silence Your Cell Phone and Put It In Your Bag!
Chapter 4 Probability, Randomness, and Uncertainty.
Section 9-3 Probability. Probability of an Event if E is an event in a sample space, S, of equally likely outcomes, then the probability of the event.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
Onur DOĞAN.  The Classical Interpretation of Probability  The Frequency Interpretation of Probability  The Subjective Interpretation of Probability.
1 1 Slide HJ copyrights Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities Assigning Probabilities n Events.
Introduction To Probability
Chapter 4 - Introduction to Probability
Math a - Sample Space - Events - Definition of Probabilities
Chapter 3 Probability.
Chapter 4 Probability.
Introduction to Probability
PB2 Multistage Events and Applications of Probability
St. Edward’s University
St. Edward’s University
Chapter 9 Probability.
General Probability Rules
Presentation transcript:

Example: Bradley Investments Bradley has invested in two stocks, Markley Oil and Collins Mining. Bradley has determined that the possible outcomes of these investments three months from now are as follows. Investment Gain or Loss in 3 Months (in $000) Markley Oil Collins Mining 10 5 -20 8 -2

A Counting Rule for Multiple-Step Experiments Bradley Investments can be viewed as a two-step experiment. It involves two stocks, each with a set of experimental outcomes. Markley Oil: n1 = 4 Collins Mining: n2 = 2 Total Number of Experimental Outcomes: n1n2 = (4)(2) = 8

Tree Diagram Markley Oil Collins Mining Experimental (Stage 1) Outcomes Gain 8 (10, 8) Gain $18,000 (10, -2) Gain $8,000 Lose 2 Gain 10 Gain 8 (5, 8) Gain $13,000 (5, -2) Gain $3,000 Lose 2 Gain 5 Gain 8 (0, 8) Gain $8,000 Even (0, -2) Lose $2,000 Lose 2 Lose 20 Gain 8 (-20, 8) Lose $12,000 Lose 2 (-20, -2) Lose $22,000

Subjective Method Applying the subjective method, an analyst made the following probability assignments. Exper. Outcome Net Gain or Loss Probability (10, 8) (10, -2) (5, 8) (5, -2) (0, 8) (0, -2) (-20, 8) (-20, -2) $18,000 Gain $8,000 Gain $13,000 Gain $3,000 Gain $2,000 Loss $12,000 Loss $22,000 Loss .20 .08 .16 .26 .10 .12 .02 .06

Events and Their Probabilities Event M = Markley Oil Profitable M = {(10, 8), (10, -2), (5, 8), (5, -2)} P(M) = P(10, 8) + P(10, -2) + P(5, 8) + P(5, -2) = .20 + .08 + .16 + .26 = .70

Events and Their Probabilities Event C = Collins Mining Profitable C = {(10, 8), (5, 8), (0, 8), (-20, 8)} P(C) = P(10, 8) + P(5, 8) + P(0, 8) + P(-20, 8) = .20 + .16 + .10 + .02 = .48

M C = {(10, 8), (10, -2), (5, 8), (5, -2), (0, 8), (-20, 8)} Union of Two Events Event M = Markley Oil Profitable Event C = Collins Mining Profitable M C = Markley Oil Profitable or Collins Mining Profitable M C = {(10, 8), (10, -2), (5, 8), (5, -2), (0, 8), (-20, 8)} P(M C) = P(10, 8) + P(10, -2) + P(5, 8) + P(5, -2) + P(0, 8) + P(-20, 8) = .20 + .08 + .16 + .26 + .10 + .02 = .82

Intersection of Two Events Event M = Markley Oil Profitable Event C = Collins Mining Profitable M C = Markley Oil Profitable and Collins Mining Profitable M C = {(10, 8), (5, 8)} P(M C) = P(10, 8) + P(5, 8) = .20 + .16 = .36

Addition Law Event M = Markley Oil Profitable Event C = Collins Mining Profitable M C = Markley Oil Profitable or Collins Mining Profitable We know: P(M) = .70, P(C) = .48, P(M C) = .36 Thus: P(M  C) = P(M) + P(C) - P(M  C) = .70 + .48 - .36 = .82 (This result is the same as that obtained earlier using the definition of the probability of an event.)

Conditional Probability Event M = Markley Oil Profitable Event C = Collins Mining Profitable = Collins Mining Profitable given Markley Oil Profitable We know: P(M C) = .36, P(M) = .70 Thus:

Multiplication Law Event M = Markley Oil Profitable Event C = Collins Mining Profitable M C = Markley Oil Profitable and Collins Mining Profitable We know: P(M) = .70, P(C|M) = .5143 Thus: P(M  C) = P(M)P(M|C) = (.70)(.5143) = .36 (This result is the same as that obtained earlier using the definition of the probability of an event.)

Multiplication Law for Independent Events Event M = Markley Oil Profitable Event C = Collins Mining Profitable Are events M and C independent? DoesP(M  C) = P(M)P(C) ? We know: P(M  C) = .36, P(M) = .70, P(C) = .48 But: P(M)P(C) = (.70)(.48) = .34, not .36 Hence: M and C are not independent.