Coaxial needle less electrospinning Ing. Lucie Vysloužilová Prof. RNDr. David Lukáš, CSc. Ing. Lucie Vysloužilová Prof. RNDr. David Lukáš, CSc.
Coaxial electrospinning Special method for bicomponent core/shell nanofibers production Shell – mostly polymer material Core – polymer of nonpolymer material, liquid, encapsulated materials Hollow nanofibers Possibility of nonspinnable materials electrospinning core shell
Coaxial needle electrospinning Droplet, one Taylor cone, one polymer jet Low productivity a) co-axial spinner b) feeding of shell material c) feeding of core material d) drop e) polymer jet f) grounded collector
Coaxial needle less electrospinning Polymeric bi-layer More Taylor cones more polymer jets Procutivity increasment a) layer of „core“ material b) layer of „shell“ material c, d) Taylor cone e) polymer jet f) grounded collector g) high electrical voltage source
Coaxial needle less electrospinning -basin Shell: 12% PVA Core: oil 12%PVA/oil12%PVA+dye/oil
Optical microscope Basin from nonconductive material Shell: 12% PVA + dye Core: oil
Optical microscope Basin from nonconductive material Shell: 12% PVA + dye Core: oil 50 µm
Weir spinner A new device for bicomponent nanofibers production Needle-less electrospinning Principle: the bi-layer overflowing through electrode
(a) Weir spinner (b) Holder (c) Feeding of shell material (d) Feeding of core material (e) Holder of cable from high voltage source Weir spinner
Shell: 12% PVA + dye + rhodamin core: 10% PVA + fitc dextran
Confocal scanning microscopy 100 µm Core:10% PVA + rhodaminShell: 12% PVA + fitc dextran
Advantages of needle-less coaxial electrospinning technology Production of bicomponent core/shell nanofibers Production of hollow fibers Encapsulation – drug delivery systems Electrospinning of nonspinnable materials by common electrospinning technology Increasing productivity Easy cleaning of the spinner
Thank you for your attention!