Implications of the H H 2 H 2 + H 3 + reaction for the ortho- to para-H 3 + ratio in interstellar clouds Kyle N. Crabtree, Lt. Col. Brian A. Tom, USAF, Carrie A. Kauffman, Brett A. McGuire, and Benjamin J. McCall University of Illinois 22 March
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H H 2 H 2 + H 3 + Experimental Details Results
Periodic Table
Astronomer’s Periodic Table
H 3 + : Why is it important? Simplest polyatomic species– theoretical benchmark Dominant ionic species in hydrogenic plasma Low proton affinity Cornerstone of gas- phase ion-molecule chemistry N O2O2 H2H2 O N2N2 CO 2 CH 4 OH C C2C2 H2OH2O H 2 CO CH NH 2 Si NH 3 CO Proton Affinity (eV)
H 3 + Chemistry Formation: 1. H 2 + cosmic ray H e - (slow) 2. H H 2 H H (fast) Destruction: H e - H 2 + H or 3H (diffuse clouds) H CO HCO + + H 2 (dense clouds)
Astronomical Spectroscopy of H 3 + R(1,0) Å R(1,1) u Å B. J. McCall Ph.D. Thesis, University of Chicago (2001).
B. J. McCall, T. R. Geballe, K. H. Hinkle, and T. Oka ApJ (1999), 522, H 3 + Spectroscopy N. Indriolo Private Communication
H 3 + Temperature Observed R(1,0) and R(1,1) u lines T ex T ex = 30 K in both diffuse and dense clouds T 01 (H 2 J=0,1 states) = 60 K in diffuse clouds Dense cloud temperatures: K
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H H 2 H 2 + H 3 + Experimental Details Results
H 3 + Symmetry S3*S3* E(12)(123)E*E* (12) * (123) * A1+A A2+A E+E A1-A A2-A E-E E+E+ A1+A1+ para ortho
Nuclear Spin Constraints on Rotational States
Ortho and para-H 3 + are distinct species T ex ≠ temperature n (1,0) /n (1,1) related to ortho/para ratio “Low” T ex overabundance of para-H 3 + H H 2 H 2 + H 3 + reaction allows H 3 + population to transfer between ortho and para spin configurations
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H H 2 H 2 + H 3 + › Reaction Outcomes › High Temperature › Low Temperature Experimental Details Results
H H 2 H 2 + H 3 + “identity” “hop” “exchange” H5+H not well understood: branching ratio α = hop/exchange quantum effects at low T simplest bimolecular reaction involving a polyatomic most common bimolecular reaction in the universe: ~10 52 s -1
Nuclear Spin Statistical Weights 1/2 0 = 1/2 3/2 0 = 3/2 + → para ortho H3+H3+ H2H2 Typeo-H 3 + p-H 3 + paraorthohop2/31/3 paraorthoexch.1/32/3 para hop01 para exch.1/32/3 p 3 ≡ [p-H 3 + ]/[total H 3 + ] p 2 ≡ [p-H 2 ]/[total H 2 ] ≡ k hop /k exchange M. Cordonnier et al., J. Chem Phys (2000), 113, T. Oka, J. Mol. Spec. (2004), 228, 635.
High Temperature Model
Key Features Linear p 3 = 0.5 w/n-H 2 M. Cordonnier et al., J. Chem Phys (2000), 113, 3181.
Need for Another Model? p-H 2 ; J = 0 o-H 2 ; J = 1 ΔE = 170 K K. Park and J. Light, J. Chem. Phys. (2007), 126, Dynamics of Floppy Molecules Session 123N Moscone Center Thursday 1:30 pm Pub #705 Experimental measurements of the H H 2 → (H 5 + )* → H 2 + H 3 + reaction Kyle N Crabtree, Brian A Tom, Carrie A Kauffman, Brett A McGuire, Benjamin J McCall
Low Temperature Model
Key Features Curvature p 3 not necessarily 0.5 with n-H 2
Model Limitations HT model only considers conservation of angular momentum; LT model adds energetic considerations Neither model takes into account the H 5 + potential energy surface LT model only uses rate coefficients from (1,0) and (1,1) states, not all ortho and para states
Outlook
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H H 2 H 2 + H 3 + Experimental Details › Difference Frequency Generation Laser › Para-H 2 Production › Supersonic Ion Source/cw-CRDS › Hollow Cathode/Direct Absorption Results
Difference Frequency Generation Laser (DFG) Spectral Range: μm Output Power: μW
Para-H 2 Production 15 K >99.9% purity B. A. Tom, S. Bhasker, Y. Miyamoto, T. Momose, and B. J. McCall Rev. Sci. Inst (2009), 80, Ferric Oxide catalyst
Hollow Cathode Cell T = 130 – 300 K
Piezo Pulsed Supersonic Expansion Ion Source Piezo disc Plunger T < 130 K
Overview H 3 + in interstellar clouds Symmetry, Nuclear Spin, and H 3 + H H 2 H 2 + H 3 + Experimental Details Results
Hollow Cathode: T=310 K
Hollow Cathode: T=180 K
Hollow Cathode: T=130 K
Supersonic Expansion: T=110 K
Low Temperature Model
Diffuse Cloud Observations Survey of diffuse cloud sightlines with known H 2 (1)/(0) measurements H 3 + measured in: › ζ-Per UKIRT (CGS4) › X-Per UKIRT (CGS4) › HD Gemini South (Phoenix) More data from VLT (CRIRES) and Keck (NIRSPEC) UKIRT Gemini South
Diffuse Cloud Observations
Conclusions Observed (1,1):(1,0) ratio ortho:para- H 3 + ratio, not temperature Likely represents steady state of H H 2 reaction, not thermalization Decrease of with temperature H 3 + ortho:para ratio possibly allows determination of H 2 ortho:para ratio in dense clouds where H 2 not observable
Acknowledgements McCall Research Group Kisam Park Funding: