N-1 Plots. 2 N-1 Plots – Lead Photon Mass Cut at 100 GeV applied Lead Photon – More plots in Backup.

Slides:



Advertisements
Similar presentations
Quark Compositeness Search with γ +Jet Final State at the LHC Satyaki Bhattacharya, Sushil S. Chauhan, Brajesh Choudhary, Debajyoti Choudhury Department.
Advertisements

6th may 2010Erik van der Kraaij (CERN) 1. 6th may 2010Erik van der Kraaij (CERN) 2.
CMS reconstruction and identification Part II CMS reconstruction and identification Part II A. Nikitenko Tau jetsTau jets Missing E T (briefly)Missing.
INTRODUCTION TO e/ ɣ IN ATLAS In order to acquire the full physics potential of the LHC, the ATLAS electromagnetic calorimeter must be able to identify.
Zγ Generator and Background Studies
1 Analysis of Prompt Diphoton Production at the Large Hadron Collider. Andy Yen Mentor: Harvey Newman Co-Mentors: Marat Gataullin, Vladimir Litvine California.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
Single Particle Energy Resolution Vishnu V. Zutshi.
10/14/20051 Tau reconstruction and H/A →  H/A →  MC events: PYTHIA ⇒ OSCAR ⇒ DIGI (mass 120 GeV ?) 10k events overnight DIGI ⇒ DST: crashes DIGI ⇒
L. Perera LPC physics meeting 11/17/ Search for H/A →  Lalith Perera Rutgers University for Rutgers CMS Group Amit Lath, Keith Rose, Sunil Somalvar,
1 Goals -Short term: – Finish merging the L1 trigger configuration files with the HLT. – When this is done, hopefully I will see that the signal increase.
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
1 Alternative Sampling Configurations – new study 20 GeV photons 30 x 5/7 X 0 20 x 5/7 X x 10/7 X 0 Total absobed energy Dep energy in Si Leakage.
1 The CMS Heavy Ion Program Michael Murray Kansas.
Potpourri Vishnu V. Zutshi Northern Illinois University.
1 Update: High energy photon pairs Vladimir Litvin, Toyoko Orimoto Caltech 04 December 2007.
Parametrized Jet Energy Resolution Studies Darius Gallagher, Graham W. Wilson Univ. of Kansas Cornell Workshop, July 15 th 2003.
1 High energy photon pairs: L1/HLT Studies Vladimir Litvin, Toyoko Orimoto Caltech, CMS Group Meeting 13June 2007.
Track Extrapolation/Shower Reconstruction in a Digital HCAL – ANL Approach Steve Magill ANL 1 st step - Track extrapolation thru Cal – substitute for Cal.
Study of a Compensating Calorimeter for a e + e - Linear Collider at Very High Energy 30 Aprile 2007 Vito Di Benedetto.
Quark Compositeness Study and Progress Satyaki Bhattacharya, Sushil S. Chauhan, Brajesh C. Choudhary & Debajyoti Choudhury Department of Physics & Astrophysics.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
1 High energy photon pairs from RS-1 Gravitons: L1/HLT Studies Vladimir Litvin, Toyoko Orimoto Caltech, CMS WG4 Group Meeting 01 June 2007.
Stefan Kasselmann Bad Honnef, August 2006 RWTH Aachen, III. Phys. Inst. B Semileptonic tt decays with 0.1/fb Stefan Kasselmann III. Physikalisches Institut.
Akimasa Ishikawa (Tohoku University)
1 Hgg Cut based Analysis update Jim Branson, Chris Palmer, Marco Pieri, Matteo Sani, Sean Simon.
India-CMS meeting, BARC 30 th July, MonoPhoton Study Umberto Berzano, Satyaki Bhattacharya, Sandhya Jain Yurii Maravin, Tia Miceli, Albert de Roeck,
25 sep Reconstruction and Identification of Hadronic Decays of Taus using the CMS Detector Michele Pioppi – CERN On behalf.
Measurement of the branching ratios for Standard Model Higgs decays into muon pairs and into Z boson pairs at 1.4 TeV CLIC Gordana Milutinovic-Dumbelovic,
Two Density-based Clustering Algorithms L. Xia (ANL) V. Zutshi (NIU)
FIMCMS, 26 May, 2008 S. Lehti HIP Charged Higgs Project Preparative Analysis for Background Measurements with Data R.Kinnunen, M. Kortelainen, S. Lehti,
LCWS06 Bangalore 13/3/06Mark Thomson 1 A Topologic Approach to Particle Flow “PandoraPFA” Mark Thomson University of Cambridge This Talk:  Philosophy.
Taikan Suehara, ILC-Asia physics meeting, 2009/06/13 page 1 Tau-pair analysis for LoI+ Taikan Suehara ICEPP, The Univ. of Tokyo.
Tth study Lepton ID with BDT 2015/02/27 Yuji Sudo Kyushu University 1.
US CMS UC Riverside, 18-May-2001, S.Kunori1 Status of JetsMET Shuichi Kunori U. of Maryland 18-May-2001 PRS: Physics Reconstruction and Selection.
Γ +Jet Analysis for the CMS Pooja Gupta, Brajesh Choudhary, Sudeep Chatterji, Satyaki Bhattacharya & R.K. Shivpuri University of Delhi, India.
Categories for resolution study Categories : eta, energy, number of primary vertices, conversion should be considered Eta : barrel – endcap ? or 4 bins.
Reconstruction of Z->tt->e+t jet events with early data in CMS Konstantinos A. Petridis IOP Conference Lancaster 31st March 2008 Overview Motivation.
Calo Calibration Meeting 29/04/2009 Plamen Hopchev, LAPP Calibration from π 0 with a converted photon.
Search for Extra Dimensions in diphotons at CMS Duong Nguyen Brown University USLOU Meeting Fermilab, Oct , 2010.
Abstract Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of.
Minbias Miss ET Study1 H C A L 100 Minbias - Hit Flags All “hits” are ~ 1000 in HCAL and ~ 7000 in ECAL for 1 crossing. Appears to be ECAL “noise”. Set.
Dijet Mass and Calibration1 H C A L Z(700) Data and Calibration Dan Green Fermilab June, 2001.
Introductions and news Zhijun Liang. News Exotics part of the analysis require the EB to be involved in the early stage of the analysis. Time scale for.
Fixing Tau HLT (Part 1.5/2) ‏ M.Bachtis. 2 L1 Seeding Fix L1: Seeding with High Et Jet paths to increase efficiency with High Et Still using corrected.
H  in CMS Chris Seez Friday, 16 th March 2012 at LAL Orsay.
S. Dasu, University of Wisconsin February Calorimeter Trigger for Super LHC Electrons, Photons,  -jets, Jets, Missing E T Current Algorithms.
Electron and Photon HLT alley M. Witek K. Senderowska, A. Żurański.
H  Gamma Gamma analysis  Signal: H production via gg fusion  /H120_gammagamma_gluonfusion/CMSSW_1_6_7-CSA /RECO 100,000 events  Background.
 reconstruction and identification in CMS A.Nikitenko, Imperial College. LHC Days in Split 1.
Search for Pair Produced Stops Decaying to a Dileptonic Final State at CMS David Kolchmeyer.
Converted photon and π 0 discrimination based on H    analysis.
IHEP Hadron Shower Shape Song LIANG ihep.ac.cn CMS-IHEP, China
Τ HLTrigger Optimization Mike B 6 th Nov. 2 M. Bachtis - UW The tau High Level Trigger scheme in CMS For the events that pass the L1 Trigger jet reconstruction.
2nd lepton veto, in the one-lepton SUSY analysis
SiPM linearization status update
 discrimination with converted photons
Interactions of hadrons in the Si-W ECAL
Starting up the CLIC detector design study CLIC Workshop, 15. Okt 2008
Study of Gamma+Jets production
Update: High energy photon pairs Search for RS-1 Gravitons
Track Extrapolation/Shower Reconstruction in a Digital HCAL
Vladimir Litvin, Toyoko Orimoto Caltech, CMS
 discrimination with converted photons
QqH;H->rr 肖虹
CMS-Bijing weekly meeting
EGAMMA HLT Marco Pieri UCSD Meeting 12 June 2007.
Song LIANG ihep.ac.cn CMS-IHEP, China
Converted photon and π0 discrimination based on H  cut-based analysis Zhen Zhang IHEP
 discrimination with converted photons
Presentation transcript:

N-1 Plots

2 N-1 Plots – Lead Photon Mass Cut at 100 GeV applied Lead Photon – More plots in Backup

3 Lead p T (N-1) Lead p T > 40 GeV Signal x 100

4 Lead p T Lead p T > 40 GeV Signal x 100

5 Lead  i  i  (N-1)  i  i   Signal x 100

6 Lead  i  i   i  i   Signal x 100

7 N-1 Plots – sublead photon Mass Cut at 100 GeV applied Sublead Photon – More plots in Backup

8 Sublead p T (N-1) Lead p T > 40 GeV Signal x 100

9 Sublead p T Lead p T > 40 GeV Signal x 100

10 Sublead  i  i  (N-1)  i  i   Signal x 100

11 Sublead  i  i   i  i   Signal x 100

In Backup

13 N-1 Plots – Lead Photon Lead Photon – More plots in Backup

14 Lead p T (N-1) Lead p T > 40 GeV Signal x 100

15 Lead p T Lead p T > 40 GeV Signal x 100

16 Lead  (N-1) Suoercluster  or  Signal x 100

17 Lead  Suoercluster  or  Signal x 100

18 Lead H/E (N-1) H/E < 0.02 Signal x 100

19 Lead H/E H/E < 0.02 Signal x 100

20 Lead  i  i  (N-1)  i  i   Signal x 100

21 Lead  i  i   i  i   Signal x 100

22 Lead Pixel Veto (N-1) Veto Pixel Seed Signal x 100

23 Lead Pixel Veto Veto Pixel Seed Signal x 100

24 Lead Track Isolation (N-1) Track Sum p T (Hollow  R < 0.4) < *p T Signal x 100

25 Lead Track Isolation Track Sum p T (Hollow  R < 0.4) < *p T Signal x 100

26 Lead Ecal Isolation (N-1) Ecal Sum E T (  R < 0.4) < *p T Signal x 100

27 Lead Ecal Isolation Ecal Sum E T (  R < 0.4) < *p T Signal x 100

28 Lead Hcal Isolation (N-1) Hcal Sum E T (  R < 0.4) < *p T Signal x 100

29 Lead Hcal Isolation Hcal Sum E T (  R < 0.4) < *p T Signal x 100

30 N-1 Plots – sublead photon Sublead Photon – More plots in Backup

31 Sublead p T (N-1) Lead p T > 40 GeV Signal x 100

32 Sublead p T Lead p T > 40 GeV Signal x 100

33 Sublead  (N-1) Suoercluster  or  Signal x 100

34 Sublead  Suoercluster  or  Signal x 100

35 Sublead H/E (N-1) H/E < 0.02 Signal x 100

36 Sublead H/E H/E < 0.02 Signal x 100

37 Sublead  i  i  (N-1)  i  i   Signal x 100

38 Sublead  i  i   i  i   Signal x 100

39 Sublead Pixel Veto (N-1) Veto Pixel Seed Signal x 100

40 Sublead Pixel Veto Veto Pixel Seed Signal x 100

41 Sublead Track Isolation (N-1) Track Sum p T (Hollow  R < 0.4) < *p T Signal x 100

42 Sublead Track Isolation Track Sum p T (Hollow  R < 0.4) < *p T Signal x 100

43 Sublead Ecal Isolation (N-1) Ecal Sum E T (  R < 0.4) < *p T Signal x 100

44 Sublead Ecal Isolation Ecal Sum E T (  R < 0.4) < *p T Signal x 100

45 Sublead Hcal Isolation (N-1) Hcal Sum E T (  R < 0.4) < *p T Signal x 100

46 Sublead Hcal Isolation Hcal Sum E T (  R < 0.4) < *p T Signal x 100