DYNAMIC POWER ALLOCATION AND ROUTING FOR TIME-VARYING WIRELESS NETWORKS Michael J. Neely, Eytan Modiano and Charles E.Rohrs Presented by Ruogu Li Department.

Slides:



Advertisements
Similar presentations
February 20, Spatio-Temporal Bandwidth Reuse: A Centralized Scheduling Mechanism for Wireless Mesh Networks Mahbub Alam Prof. Choong Seon Hong.
Advertisements

The Capacity of Wireless Networks Danss Course, Sunday, 23/11/03.
The Capacity of Wireless Networks
Capacity of wireless ad-hoc networks By Kumar Manvendra October 31,2002.
Mobility Increase the Capacity of Ad-hoc Wireless Network Matthias Gossglauser / David Tse Infocom 2001.
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
Delay Analysis and Optimality of Scheduling Policies for Multihop Wireless Networks Gagan Raj Gupta Post-Doctoral Research Associate with the Parallel.
Network Utility Maximization over Partially Observable Markov Channels 1 1 Channel State 1 = ? Channel State 2 = ? Channel State 3 = ? Restless.
Queuing Network Models for Delay Analysis of Multihop Wireless Ad Hoc Networks Nabhendra Bisnik and Alhussein Abouzeid Rensselaer Polytechnic Institute.
Dynamic Data Compression in Multi-hop Wireless Networks Abhishek B. Sharma (USC) Collaborators: Leana Golubchik Ramesh Govindan Michael J. Neely.
Delay and Throughput in Random Access Wireless Mesh Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE Department Rensselaer Polytechnic Institute (RPI)
Resource Allocation in Wireless Networks: Dynamics and Complexity R. Srikant Department of ECE and CSL University of Illinois at Urbana-Champaign.
EE 685 presentation Optimal Control of Wireless Networks with Finite Buffers By Long Bao Le, Eytan Modiano and Ness B. Shroff.
Lecture 2. Recapitulation Algorithm complexity analysis Point to point routing algorithms –Dijkstra –Bellman-Ford Questions?
Intelligent Packet Dropping for Optimal Energy-Delay Tradeoffs for Wireless Michael J. Neely University of Southern California
Universal Scheduling for Networks with Arbitrary Traffic, Channels, and Mobility Michael J. Neely, University of Southern California Proc. IEEE Conf. on.
Kuang-Hao Liu et al Presented by Xin Che 11/18/09.
Max Weight Learning Algorithms with Application to Scheduling in Unknown Environments Michael J. Neely University of Southern California
The Capacity of Wireless Ad Hoc Networks
1 Cooperative Communications in Networks: Random coding for wireless multicast Brooke Shrader and Anthony Ephremides University of Maryland October, 2008.
*Sponsored in part by the DARPA IT-MANET Program, NSF OCE Opportunistic Scheduling with Reliability Guarantees in Cognitive Radio Networks Rahul.
Scheduling Algorithms for Wireless Ad-Hoc Sensor Networks Department of Electrical Engineering California Institute of Technology. [Cedric Florens, Robert.
Introduction to Cognitive radios Part two HY 539 Presented by: George Fortetsanakis.
Mobility Increases Capacity In Ad-Hoc Wireless Networks Lecture 17 October 28, 2004 EENG 460a / CPSC 436 / ENAS 960 Networked Embedded Systems & Sensor.
EE 685 presentation Optimization Flow Control, I: Basic Algorithm and Convergence By Steven Low and David Lapsley Asynchronous Distributed Algorithm Proof.
A Fair Scheduling Policy for Wireless Channels with Intermittent Connectivity Saswati Sarkar Department of Electrical and Systems Engineering University.
1 40 th Annual CISS 2006 Conference on Information Sciences and Systems Some Optimization Trade-offs in Wireless Network Coding Yalin E. Sagduyu Anthony.
1 Optimization and Stochastic Control of MANETs Asu Ozdaglar Electrical Engineering and Computer Science Massachusetts Institute of Technology CBMANET.
Optimal Multicast Capacity and Delay Tradeoffs in MANETs: A Global Perspective Yun Wang, Xiaoyu Chu, Xinbing Wang Department of Electronic Engineering.
Optimal Energy and Delay Tradeoffs for Multi-User Wireless Downlinks Michael J. Neely University of Southern California
Distributed Quality-of-Service Routing of Best Constrained Shortest Paths. Abdelhamid MELLOUK, Said HOCEINI, Farid BAGUENINE, Mustapha CHEURFA Computers.
MAXIMIZING SPECTRUM UTILIZATION OF COGNITIVE RADIO NETWORKS USING CHANNEL ALLOCATION AND POWER CONTROL Anh Tuan Hoang and Ying-Chang Liang Vehicular Technology.
Resource Allocation for E-healthcare Applications
EE 685 presentation Distributed Cross-layer Algorithms for the Optimal Control of Multi-hop Wireless Networks By Atilla Eryılmaz, Asuman Özdağlar, Devavrat.
Optimal Backpressure Routing for Wireless Networks with Multi-Receiver Diversity Michael J. Neely University of Southern California
1 11 Subcarrier Allocation and Bit Loading Algorithms for OFDMA-Based Wireless Networks Gautam Kulkarni, Sachin Adlakha, Mani Srivastava UCLA IEEE Transactions.
Delay Analysis for Maximal Scheduling in Wireless Networks with Bursty Traffic Michael J. Neely University of Southern California INFOCOM 2008, Phoenix,
By Avinash Sridrahan, Scott Moeller and Bhaskar Krishnamachari.
Message-Passing for Wireless Scheduling: an Experimental Study Paolo Giaccone (Politecnico di Torino) Devavrat Shah (MIT) ICCCN 2010 – Zurich August 2.
The Case for Addressing the Limiting Impact of Interference on Wireless Scheduling Xin Che, Xi Ju, Hongwei Zhang {chexin, xiju,
CS774. Markov Random Field : Theory and Application Lecture 21 Kyomin Jung KAIST Nov
Michael J. Neely, University of Southern California CISS, Princeton University, March 2012 Wireless Peer-to-Peer Scheduling.
1 A Simple Asymptotically Optimal Energy Allocation and Routing Scheme in Rechargeable Sensor Networks Shengbo Chen, Prasun Sinha, Ness Shroff, Changhee.
Michael J. Neely, University of Southern California CISS, Princeton University, March 2012 Asynchronous Scheduling for.
Delay-Based Back-Pressure Scheduling in Multi-Hop Wireless Networks 1 Bo Ji, 2 Changhee Joo and 1 Ness B. Shroff 1 Department of ECE, The Ohio State University.
Super-Fast Delay Tradeoffs for Utility Optimal Scheduling in Wireless Networks Michael J. Neely University of Southern California
EE 685 presentation Optimization Flow Control, I: Basic Algorithm and Convergence By Steven Low and David Lapsley.
Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project Competitive Scheduling in Wireless Networks with Correlated Channel State Ozan.
Fairness and Optimal Stochastic Control for Heterogeneous Networks Time-Varying Channels     U n (c) (t) R n (c) (t) n (c) sensor.
Order Optimal Delay for Opportunistic Scheduling In Multi-User Wireless Uplinks and Downlinks Michael J. Neely University of Southern California
Content caching and scheduling in wireless networks with elastic and inelastic traffic Group-VI 09CS CS CS30020 Performance Modelling in Computer.
1 An Arc-Path Model for OSPF Weight Setting Problem Dr.Jeffery Kennington Anusha Madhavan.
Queueing in switched networks Damon Wischik, UCL thanks to Devavrat Shah, MIT TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Stochastic Optimization for Markov Modulated Networks with Application to Delay Constrained Wireless Scheduling Michael J. Neely University of Southern.
1 11 Distributed Channel Assignment in Multi-Radio Mesh Networks Bong-Jun Ko, Vishal Misra, Jitendra Padhye and Dan Rubenstein Columbia University.
Delay Analysis for Max Weight Opportunistic Scheduling in Wireless Systems Michael J. Neely --- University of Southern California
Energy Optimal Control for Time Varying Wireless Networks Michael J. Neely University of Southern California
A Low Interference Channel Assignment Algorithm for Wireless Mesh Networks Can Que 1,2, Xinming Zhang 1, and Shifang Dai 1 1.Department of Computer Science.
Wireless Packet Scheduling With Soft Deadlines Aditya Dua and Nicholas Bambos Department of Electrical Engineering Stanford University ICC 2007.
Joint Routing and Scheduling Optimization in Wireless Mesh Networks with Directional Antennas A. Capone, I. Filippini, F. Martignon IEEE international.
-1/16- Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks C.-K. Toh, Georgia Institute of Technology IEEE.
Impact of Interference on Multi-hop Wireless Network Performance
Presented by Tae-Seok Kim
Scheduling Algorithms for Multi-Carrier Wireless Data Systems
Scheduling Algorithms in Broad-Band Wireless Networks
Throughput-Optimal Broadcast in Dynamic Wireless Networks
Javad Ghaderi, Tianxiong Ji and R. Srikant
Advisor: Yeong-Sung, Lin, Ph.D. Presented by Yu-Ren, Hsieh
Optimal Control for Generalized Network-Flow Problems
Satellite Packet Communications A UNIT -V Satellite Packet Communications.
Presentation transcript:

DYNAMIC POWER ALLOCATION AND ROUTING FOR TIME-VARYING WIRELESS NETWORKS Michael J. Neely, Eytan Modiano and Charles E.Rohrs Presented by Ruogu Li Department of Electrical and Computer Engineering The Ohio State University

CONTENTS Overview System Model and Assumptions Network Capacity Region Centralized DRPC Policy Proof of stability Enhanced DRPC Policy Decentralized DRPC Policy Conclusion Future work

OVERVIEW We consider dynamic routing and power allocation for a wireless network with time-varying channels: The network consists of power constrained nodes; Transmission rates over the links are determined by allocated power; Packets randomly enter the system at each node and wait in output queues to be transmitted to their destinations; We developed a joint routing and power allocating policy (DRPC) that stabilizes the system and provides bounded average delay.

SYSTEM MODEL AND ASSUMPTIONS A wireless network with nodes; Time is slotted, channel state stays the same in one slot; Multiple data stream randomly enter the system with source and destination ; Each node can transmit data over multiple links simultaneously; Power is assigned to links at each node.

SYSTEM MODEL AND ASSUMPTIONS Power constraint at each node: Transmission rate on each link is determined by a rate- power curve, where is the power matrix, and is the channel state matrix; Channel state represents, for example, attenuation and/or noise levels; it is known to the controller at the beginning of each time slot;

SYSTEM MODEL AND ASSUMPTIONS The power curve is assumed to be upper semi-continuous in the power matrix for all states ; The power matrix, where is the set of acceptable power allocations.

SYSTEM MODEL AND ASSUMPTIONS Each node queues data according to their destinations; We classify all data flowing through the network as belonging to a particular commodity, representing the destination node for the data; Define as the rate offered to commodity traffic along link ;

SYSTEM MODEL AND ASSUMPTIONS The input process of the network are stationary and ergodic with rates. represents the incoming rate at node of commodity. The matrix is the corresponding matrix with diagonal entries equal to zero. Further assume that the second moment of is bounded every time slot by some finite maximum value regardless of past history.

SYSTEM MODEL AND ASSUMPTIONS The control decision variables are: Power allocation, choose such that ; Routing/Scheduling, choose such that The backlog of bits in node destined for node c is represent by (the queue length).

NETWORK CAPACITY REGION A queueing system is said to be stable if the queue length does not ‘blow up’ when time goes to infinity; The network capacity region is the closure f the set of all rates matrices that can be stably supported over the network, considering all possible algorithms.

NETWORK CAPACITY REGION Example: The capacity region will be

CENTRALIZED DRPC POLICY Dynamic Routing and Power Control (DRPC) Policy: For all links, find commodity such that and define Power allocation: choose a matrix such that Routing: define transmission rate as follows:, if and, otherwise

CENTRALIZED DRPC POLICY It is inspired by the maximum differential backlog algorithms developed by Tassiulas and Ephremids; An extension of the maximum differential backlog algorithm which maximize the throughput of a constrained network; Thus DRPC Policy maximizes the throughput of the network. Ref: L. Tassiulas and A. Ephremids, “Stability properites of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks,” IEEE trans. Autom. Control, vol. 37, no.12, Dec 1992

CENTRALIZED DRPC POLICY Stability of DRPC Policy Theorem: Suppose an N-node wireless network has capacity region and rate matrix such that for some. Then, the above DPRC policy stabilize the system and guarantees bounded average congestion. Proof of Stability of DRPC Policy Basic idea: prove the stability of the system using a Lyapunov function. A function is a Lyapunov candidate function if it is locally positive definite, i.e. The choice of the Lyapunov function is based on the problem.

CENTRALIZED DRPC POLICY The proof in the paper is very complicated; We consider a similar simpler case using the same approach; Single base station sends out data to N users; Data arrive at base station with rate, same assumption for the arriving process; B.S. User 1 User 2 User 3 User N

CENTRALIZED DRPC POLICY Constraint for the base station, ‘power constraint’ with linear rate power curve, denote the set of feasible by ; Control variable: choose ; The arrive rates satisfy, where is the capacity region; Policy: choose B.S. User 1 User 2 User 3 User N

CENTRALIZED DRPC POLICY Queue evolution: Choose the Lyapunov function Thus the Lyapunov drift is given by

CENTRALIZED DRPC POLICY Notice that ; Thus From the assumption of, we know that second moment,

CENTRALIZED DRPC POLICY Thus we get which is an simplified version of (21) in the paper; Sum over 1 through T-1 and take expectation on both sides, we get From the non negativity of the Lyapunov function,

CENTRALIZED DRPC POLICY Taking the limit of the above inequality Thus we proved the stability of the system under our policy; Using Little’s Law we can get the bound on delay; The proof in the paper is an extension of this simple case.

ENHANCED DRPC POLICY Potential problem of DRPC Policy: When the network is lightly loaded, very little information is contained in the backlog values; Packets may wander in the network, resulting long delays; Solution: Adding a restricted set of desirable routes; But restricting the routes may be harmful in time varying channels; Enhanced DRPC Algorithm is introduced to solve this problem.

ENHANCED DRPC POLICY Basic idea: implementing a ‘bias’ in the DRPC Policy so that in low loading situations, nodes are inclined to route packets in the direction of their destinations; Define and define as the maximizer of ; Power allocation and routing is done as before;

ENHANCED DRPC POLICY The parameters can be chosen as scaled hop count estimates between nodes and, so that, in the absence of backlog information, data is routed to reduce the remaining distance to the destination; The values are any weights for prioritizing commodity service in node ; It can be shown that this enhanced DRPC Policy can stabilize the system for any and.

DECENTRALIZED DRPC POLICY The DRPC Policy is a centralized control; Hard to implement in reality; The authors provided a simple decentralized approximation without proof; Nodes have current neighbors; The current neighbors of a node is defined as the set of the nodes to which node can currently transmit and receive.

DECENTRALIZED DRPC POLICY The Decentralized DRPC Policy At the beginning of each time slot, nodes randomly decide to transmit with probability. All transmitting nodes send a control signal of power where is globally known; Define as the set of all transmitting nodes. Each node measures its total resulting interference and send this quantity over a control channel to all neighbors; Each transmitting user decides to transmit using full power to the single neighbor who maximizes

CONCLUSION We have formulated a general power allocation problem for a multinode wireless network with time-varying channels and adaptive transmission rates; The network capacity region was established; A DRPC algorithm is developed and shown to stabilize the network whenever the arrival rate matrix is within the capacity region.

FUTURE WORK The DRPC policy is based on maximum backlog differential algorithm which tries to maximize the throughput of the network, but other network control metrics such as minimizing the delay are not considered. In the policy, we need to find which is not a trivial problem. A straightforward exhaustive search may not work for large networks. Many works have been done on this, for example, using greedy algorithm.