1 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, 24-27 July, 2011. WHY DIFFERENT PASSIVE MICROWAVE ALGORITHMS GIVE DIFFERENT SOIL MOISTURE.

Slides:



Advertisements
Similar presentations
Evaluation and Improvement of the AQUA/AMSR-E Soil Moisture Algorithm AMSR-E Science Team Meeting June, 2011, Asheville, NC I. E. Mladenova, T. J.
Advertisements

MoistureMap: Multi-sensor Retrieval of Soil Moisture Mahdi Allahmoradi PhD Candidate Supervisor: Jeffrey Walker Contributors: Dongryeol Ryu, Chris Rudiger.
AMS’04, Seattle, WA. January 12, 2004Slide 1 HYDROS Radiometer and Radar Combined Soil Moisture Retrieval Using Kalman Filter Data Assimilation X. Zhan,
Evaluation of Alternatives for Improving the AMSR Soil Moisture Product AMSR-E TIM Meeting 4-5 Sep, 2012, Oxnard, CA. I. E. Mladenova, T. J. Jackson, R.
Extension and application of an AMSR global land parameter data record for ecosystem studies Jinyang Du, John S. Kimball, Lucas A. Jones, Youngwook Kim,
Enhancing vegetation productivity forecasting using remotely-sensed surface soil moisture retrievals Wade T. Crow USDA Hydrology and Remote Sensing Laboratory,
Development of a continuous multi- satellite land surface temperature product Thomas Holmes, Wade Crow, Tom Jackson, Martha Anderson, Christopher Hain*,
Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling Yudong Tian, Christa Peters-Lidard, Ken Harrison, Sujay Kumar and Sarah.
Communicating Uncertainties for Microwave-Based ESDRs Frank J. Wentz, Carl A. Mears, and Deborah K. Smith Remote Sensing Systems, Santa Rosa CA Supported.
R. Reichle 1 * and C. Draper 1,2 With contributions from: G. De Lannoy, R. de Jeu, Q. Liu, V. Naeimi, R. Parinussa, W. Wagner AMSR-E Technical Interchange.
SMAP and Agricultural Productivity Applications
AGU 2004 Fall Meeting, May 19, 2015Slide 1 Jointly Retrieving Surface Soil Moisture from Active and Passive Microwave Observations using Cubist Data-Mining.
Shenglei Zhang ﹡, Jiancheng Shi, Youjun Dou Xiaojun Yin, Liying Li, Chenzhou Liu ﹡ Experiments of satellite data simulation based on.
Sea water dielectric constant, temperature and remote sensing of Sea Surface Salinity E. P. Dinnat 1,2, D. M. Le Vine 1, J. Boutin 3, X. Yin 3, 1 Cryospheric.
Near Surface Soil Moisture Estimating using Satellite Data Researcher: Dleen Al- Shrafany Supervisors : Dr.Dawei Han Dr.Miguel Rico-Ramirez.
MODIS Science Team Meeting - 18 – 20 May Routine Mapping of Land-surface Carbon, Water and Energy Fluxes at Field to Regional Scales by Fusing Multi-scale.
Passive Microwave Rain Rate Remote Sensing Christopher D. Elvidge, Ph.D. NOAA-NESDIS National Geophysical Data Center E/GC2 325 Broadway, Boulder, Colorado.
AMSR-E Soil Moisture Retrievals Using the SCA During NAFE’06 T.J. Jackson and R. Bindlish USDA ARS Hydrology and Remote Sensing Lab September 22, 2008.
Surface Skin Temperatures Observed from IR and Microwave Satellite Measurements Catherine Prigent, CNRS, LERMA, Observatoire de Paris, France Filipe Aires,
Introduction Global soil moisture is one of the critical land surface initial conditions for numerical weather, climate, and hydrological predictions.
Single Column Experiments with a Microwave Radiative Transfer Model Henning Wilker, Meteorological Institute of the University of Bonn (MIUB) Gisela Seuffert,
A Study on Vegetation OpticalDepth Parameterization and its Impact on Passive Microwave Soil Moisture Retrievals A Study on Vegetation Optical Depth Parameterization.
Assimilation of MODIS and AMSR-E Land Products into the NOAH LSM Xiwu Zhan 1, Paul Houser 2, Sujay Kumar 1 Kristi Arsenault 1, Brian Cosgrove 3 1 UMBC-GEST/NASA-GSFC;
Synergy of L-band and optical data for soil moisture monitoring O. Merlin, J. Walker and R. Panciera 3 rd NAFE workshop sept
Fig. 2: Radiometric angular response from deciduous Paulownia trees is plotted. The red, blue, black, and green curves trace the simulated values of four.
The Canadian Science and Applications Plan for SMAP Stéphane Bélair Science and Technology Branch, Environment Canada July 2011, IGARSS, Vancouver,
Role of Soil Moisture/Climate Networks in SMAP Validation T. J
Slide 1/32NOAA Soil Moisture/Soil Temperature Workshop, Oak Ridge, TN, 3-5 March, 2009 Value of Ground Network Observations in Development of Satellite.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
EVALUATION OF SMAP LEVEL 2 SOIL MOISTURE ALGORITHMS USING SMOS DATA
Multi-mission synergistic activities: A new era of integrated missions Christa Peters- Lidard Deputy Director, Hydrospheric and Biospheric Sciences, Goddard.
Princeton University Development of Improved Forward Models for Retrievals of Snow Properties Eric. F. Wood, Princeton University Dennis. P. Lettenmaier,
Workbook DAAC Product Review Passive Microwave Data Sets Walt Meier.
Prospects for improving global agricultural drought monitoring using microwave remote sensing Wade Crow USDA Agricultural Research Services Hydrology and.
Pang-Wei Liu 1, Roger De Roo 2, Anthony England 2,3, Jasmeet Judge 1 1. Center for Remote Sensing, Agri. and Bio. Engineering, U. of Florida 2. Atmosphere,
A Combined Radar/Radiometer Retrieval for Precipitation IGARSS – Session 1.1 Vancouver, Canada 26 July, 2011 Christian Kummerow 1, S. Joseph Munchak 1,2.
Development and evaluation of Passive Microwave SWE retrieval equations for mountainous area Naoki Mizukami.
APPLICATIONS OF THE INTEGRAL EQUATION MODEL IN MICROWAVE REMOTE SENSING OF LAND SURFACE PARAMETERS In Honor of Prof. Adrian K. Fung Kun-Shan Chen National.
William Crosson, Ashutosh Limaye, Charles Laymon National Space Science and Technology Center Huntsville, Alabama, USA Soil Moisture Retrievals Using C-
Roughness Model of Radar Backscattering From Bare Soil Surfaces Amimul Ehsan Electrical Engineering and Computer Science Department, University of Kansas.
IGARSS 2011, Jul. 26, Vancouver 1 Improving Land Surface Energy and Water Fluxes Simulation over the Tibetan Plateau with Using a Land Data Assimilation.
Preparations for Assimilating Land Surface Observations from GOES-R, NPP/VIIRS and AMSR2 in NCEP NWP Models from GOES-R, NPP/VIIRS and AMSR2 in NCEP NWP.
AMSR-E Science Team Meeting, Arlington, VA Using AMSR-E to prepare for the SMAP Level 4 Surface and Root-zone Soil Moisture product Jun 26, 2009 Rolf Reichle*
Land Surface Microwave Emissivity: Uncertainties, Dynamics and Modeling Yudong Tian, Christa Peters-Lidard, Ken Harrison, Sujay Kumar and Sarah Ringerud.
2011 IEEE Judith A. Resnik Award University of Michigan
WATER VAPOR RETRIEVAL OVER CLOUD COVER AREA ON LAND Dabin Ji, Jiancheng Shi, Shenglei Zhang Institute for Remote Sensing Applications Chinese Academy of.
Land Surface Modeling Studies in Support of AQUA AMSR-E Validation PI: Eric F. Wood, Princeton University Project Goal: To provide modeling support to.
A review on different methodologies employed in current SWE products from spaceborne passive microwave observations Nastaran Saberi, Richard Kelly Interdisciplinary.
Ice-Phase Precipitation Remote Sensing Using Combined Passive and Active Microwave Observations Benjamin T. Johnson UMBC/JCET & NASA/GSFC (Code 613.1)
IGARSS 2011, Jul. 27, Vancouver 1 Monitoring Vegetation Water Content by Using Optical Vegetation Index and Microwave Vegetation Index: Field Experiment.
Bill Teng GES DISC UWG May 11, Application Project: ~Extended User Science Data Support Customized data Production of new data Customized tools.
Use of AMSR-E Land Parameter Modeling and Retrievals for SMAP Algorithm Development Steven Chan Eni Njoku Joint AMSR Science Team Meeting Telluride, Colorado.
Developing Synergistic Data Assimilation Approaches for Passive Microwave and Thermal Infrared Soil Moisture Retrievals Christopher R. Hain SPoRT Data.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Evaluation of the SMAP.
Recent SeaWiFS view of the forest fires over Alaska Gene Feldman, NASA GSFC, Laboratory for Hydrospheric Processes, Office for Global Carbon Studies
Infrared and Microwave Remote Sensing of Sea Surface Temperature Gary A. Wick NOAA Environmental Technology Laboratory January 14, 2004.
“Land Surface Study” Scenario – Ted Strub’s Effort Search on “soil moisture brightness temperature” At the bottom of the first page of the results was.
Sarah Abelen and Florian Seitz Earth Oriented Space Science and Technology (ESPACE) IAPG, TUM Geodätische Woche 2010 Contributions of different water storage.
CGMS-43-NOAA-WP-25 Coordination Group for Meteorological Satellites - CGMS NOAA Use of Soil Moisture Products Presented to CGMS-43 Working Group 2 session,
“CMORPH” is a method that creates spatially & temporally complete information using existing precipitation products that are derived from passive microwave.
Principal Investigator: Eni G. Njoku
Alexander Loew1, Mike Schwank2
SOLab work description
GPM Microwave Radiometer Vicarious Cold Calibration
(I) Copula Derived Observation Operators for Assimilating Remotely Sensed Soil Moisture into Land Surface Models Huilin Gao Surface Hydrology Group University.
NSIDC DAAC UWG Meeting August 9-10 Boulder, CO
SMOS Soil Moisture Validation With U.S. In Situ Networks
Development and Evaluation of a Forward Snow Microwave Emission Model
Improved Forward Models for Retrievals of Snow Properties
Study Identification and Selection Process
Presentation transcript:

1 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, WHY DIFFERENT PASSIVE MICROWAVE ALGORITHMS GIVE DIFFERENT SOIL MOISTURE RETRIEVALS WHY DIFFERENT PASSIVE MICROWAVE ALGORITHMS GIVE DIFFERENT SOIL MOISTURE RETRIEVALS Xiwu Zhan, Jicheng Liu NOAA-NESDIS Center for Satellite Applications and Research, Camp Springs, MD Thomas Holmes, Wade Crow, Tom Jackson USDA-ARS Hydrology and Remote Sensing Lab, Beltsville, MD USDA-ARS Hydrology and Remote Sensing Lab, Beltsville, MD Steven Chan NASA-JPL, Pasadena, CA NASA-JPL, Pasadena, CA IGARSS 2011, Vancouver, Canada, July, 2011

2 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, OUTLINE  Current PM SM Data Products  Single-Channel vs Multi-Channel Algorithms  Uncertainty Sensitivity Analysis  Summary

3 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, GSFC SMMR (Owe et al, 2001) GSFC SMMR (Owe et al, 2001) USDA TMI (Bindlish et al, 2003) USDA TMI (Bindlish et al, 2003) Princeton TMI (Gao et al, 2006) Princeton TMI (Gao et al, 2006) NASA AMSR-E (Njoku et al, 2003) NASA AMSR-E (Njoku et al, 2003) USDA AMSR-E (Jackson et al, 2007) USDA AMSR-E (Jackson et al, 2007) VUA AMSR-E (Owe et al, 2008) VUA AMSR-E (Owe et al, 2008) USDA WindSat (Jackson et al, 2008) USDA WindSat (Jackson et al, 2008) NRL WindSat (Li et al, 2008) NRL WindSat (Li et al, 2008) Current Satellite Soil Moisture Data Products:

4 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, T B,i cmp = T s {e r,i exp (-  i /cos  ) + (1 –  ) [1 – exp (-  i /cos  )] [1 + (1-e r,i )exp (-  i /cos  )]}  i = b *VWC e r,i = f(e s, h) e s = f(ε) -- Fresnel Equation ε = f(SM) -- Mixing model (Dobson et al) T B,i obs = T B06h, T B06v, T B10h, T B10v, T B18h, T B18v Multi-channel Inversion (MCI) Algorithm : (Njoku & Li, 1999)

5 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Land Parameter Retrieval Model (LPRM) : (Owe, de Jeu & Holms, 2008) T Bh cmp = T s {e h,r exp (-  /cos  ) + (1 –  ) [1 – exp (-  /cos  )] [1 + (1- e h,r )exp (-  /cos  )]}  = f(MPDI),MPDI = (T Bv -T Bh )/(T Bv +T Bh ) e h = f(e s, h, Q) e s = f(ε) -- Fresnel Equation ε = f(SM) -- Mixing model (Wang & Schmugge) T s = f(T B37v ) or T s LSM T Bh obs = T B06h, T B10h or T B18h

6 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Single Channel Retrieval Algorithm (SCA) : (Jackson, 1993) T B10h = T s [1 –(1-e r ) exp (-2  /cos  )]  = b * VWC, VWC = f(NDVI) e h = f(e v, h, Q) e s = f(ε) -- Fresnel Equation ε = f(SM) -- Mixing model T s = f(T B37v ) or T s LSM

7 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Retrieval Results: MCI LPRM SCR SM: Aug 4, 2010

8 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Retrieval Results: MCI LPRM SCA SM: Aug 5, 2010

9 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Retrieval Results: MCI LPRM SCA SM: Aug 6, 2010

10 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Retrieval Results: MCI LPRM SCA NDVI/VWC/tau: Aug 4, 2010

11 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Retrieval Results: MCI LPRM SCA NDVI/VWC/tau: Aug 5, 2010

12 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Retrieval Results: MCI LPRM SCA NDVI/VWC/tau: Aug 6, 2010

13 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, MCI and LPRM: 1.LPRM converges while MCI sometimes not; 2.Remove tau=f(MPDI) from LPRM and use Ts = f(Tb37v) for MCI; 3.Perturb Tb37v, Tbh & Tbv for LPRM and MCI to test how they are sensitive to their errors. Uncertainty Sensitivity Analysis Procedure:

14 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Land Parameter Retrieval Model (LPRM) : (Owe, de Jeu & Holms, 2008) T Bh cmp = T s {e h,r exp (-  /cos  ) + (1 –  ) [1 – exp (-  /cos  )] [1 + (1- e h,r )exp (-  /cos  )]}  = f(MPDI),MPDI = (T Bv -T Bh )/(T Bv +T Bh ) e h = f(e s, h, Q) e s = f(ε) -- Fresnel Equation ε = f(SM) -- Mixing model (Wang & Schmugge) T s = f(T B37v ) T Bh obs = T B10h

15 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Multi-channel Inversion with LPRM (MCI) : T Bh cmp = T s {e h,r exp (-  /cos  ) + (1 –  ) [1 – exp (-  /cos  )] [1 + (1- e h,r )exp (-  /cos  )]} e h = f(e s, h, Q) e s = f(ε) -- Fresnel Equation ε = f(SM) -- Mixing model (Wang & Schmugge) T s = f(T B37v ) T Bi obs = T B10h and T B10v

16 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Impact of Tau = f(MPDI) on SM Retrievals: LPRM with tau = f(MPDI) MCI without tau = f(MPDI)

17 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Impact of 2K Ts error on LPRM/MCI Retrievals: Ts + 2K Ts – 2K

18 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, No Ts errors

19 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Impact of 2K Tb error on LPRM/MCI Retrievals: Tbh + 2K Tbv - 2K Tbh - 2K Tbv + 2K

20 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, No Tb errors

21 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, SCA: 1.Use GLDAS SM inverse tau with SCA eqns; 2.Use the inversed tau to retrieve SM as reference; 3.Perturb Tb37v, Tbh for SCA retrievals to test how they are sensitive to these errors. Uncertainty Sensitivity Analysis Procedure:

22 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Inversed SM and Tau using SCA equns: tau SM

23 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Impact of Tau error on SCA Retrievals: Tau No Tau error

24 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Impact of Tau error on SCA Retrievals: Tau No Tau error

25 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, Impact of Tau error on SCA Retrievals: Tau No Tau error

26 X. Zhan, NOAA-NESDIS-STAR, IGARSS 2011, Vancouver, Canada, July, SUMMARY  The difference of current satellite soil moisture products may confuse users.  Single-Channel Algorithm relies heavily on accuracy of tau estimates.  LPRM algorithm uses a tau-MPDI relationship and T B37v for T s estimate to reduce iteration variable numbers in solution procedure. Its sensitivity to T B calibration, T s estimate and other parameter errors needs to be assessed.  Multi-channel Inversion algorithm is similar to LPRM algorithm when using the same T s estimates. Thus, the tau-MPDI relationship may not be the key for the LPRM success.