CHAPTER 53 – COMMUNITY ECOLOGY Themes: Interaction with the environment Regulation Scientific Inquiry Evolution.

Slides:



Advertisements
Similar presentations
COMMUNITY ECOLOGY.
Advertisements

Chapter Community Ecology: The Interactions of Different Populations I. What is a Community? - An assemblage of species living close enough together.
Chapter 53 Notes Community Ecology. What is a Community? A __________ is any assemblage of populations in an area or habitat. Communities differ dramatically.
COMMUNITY ECOLOGY.
Community Interactions
Community Ecology Chapter 47 Mader: Biology 8th Ed.
Chapter 53 Reading Quiz 1.A bunch of populations living close together and possibly interacting is called a ____. 2.Which type of interspecific interaction.
What is a Community? A community is defined as an assemblage of species living close enough together for potential interaction. Communities differ in their.
What is a Community? A community is defined as an assemblage of species living close enough together for potential interaction. Communities differ in their.
CHAPTER 53 COMMUNITY ECOLOGY Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B1: Interspecific Interactions and Community.
Ch. 53 Communities Assembly of species living close enough together for possible interaction Differ in species richness Coevolution describes interactions.
Ch Communities and Ecosystems. How do organisms interact in a community? Properties of a community: Diversity - variety of different kinds of organisms.
Lecture Ecology Chapter 53 ~ Community Ecology. Community structure Community ~ an assemblage of populations living close enough together for potential.
Chapter 41 - Community Interactions
Chapter 54: Community Ecology
Ch. 54 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
Ch. 52 Community Ecology: What you should already know… Community Predation Herbivory (herbivores eating plants) Symbiotic relationships= parasitism (+/-),
Community Ecology Chapter 54. Slide 2 of 20 Community  Def. – group of populations (different species) that live close enough to interact  Interspecific.
Community Ecology Chapter 53. Community - group of species living close enough for interaction. Species richness – # of species a community contains;
1 Community Ecology Chapter Biological Communities A community consists of all the species that occur together at any particular locality.
Chapter 53 Community Ecology.
Ch 53 – Community Ecology. What is a community? A group of populations of different species living close enough to interact.
COMMUNITIES AND ECOSYSTEMS. COMMUNITY-LEVEL ECOLOGY – COMMUNITY DEF  ?? DEFINING CHARACTERISTICS OF A COMMUNITY – DIVERSITY (BIO-DIVERSITY) – PREVALENT.
 2.d.1 – All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions.
Community Ecology Chapter 54. Community An assemblage of populations of various species living close enough for potential interactions.
Community Ecology. Community interactions: Community Ecology.
Community Ecology Chapter 53. Community - group of species living close enough for interaction. Species richness – # of species a community contains;
Chapter 53 Community Ecology.
COMMUNITY ECOLOGY Populations of different species that live and interact at same place and same time.
Chapter 53: Community Ecology. Community Ecology The study of the interactions between the species in an area.
Copyright © 2005 Brooks/Cole — Thomson Learning Biology, Seventh Edition Solomon Berg Martin Chapter 52 Community Ecology.
Chapter 53 – Community Ecology What is a community? A community is a group of populations of various species living close enough for potential interaction.
Chapter 53 ~ Community Ecology.
Ecosystems and Living Organisms Chapter 4. Communities Different populations of organisms that live and interact together in the same place at the same.
Chapter 54 Community Ecology How many interactions between species can you see in this picture? -Community Interactions are classified by whether they.
Ecosystems and Communities Chapter 4. What shapes an ecosystem? Biotic and Abiotic Factors Biotic Factors  living things that affect an organism –biotic.
Chapter 53 ~ Community Ecology
Interspecific interactions Competition (-/-) Predation (+/-) Herbivory (+/-) Symbiosis Mutualism (+/+) Commensalism (+/0) Parasitism (+/-)
Chapter 4: Evolution, Biological Communities, and Species Interactions Advanced Environmental Science.
COMMUNITY ECOLOGY CH 54 Community: a group of populations of species interacting.
Community Ecology Chapter 54. Community An assemblage of populations of various species living close enough for potential interactions.
Chapter 37.1 – 37.6 COMMUNITY ECOLOGY. What you need to know! The community level of organization The role of competitive exclusion in interspecific competition.
Ecology. What is ecology? The study of interactions between organisms and their environment Remember: Cell  Tissue  Organ  Organ System  Organism.
All interactions between biotic factors that can impact an ecosystem
Chapter 54: Community Ecology
Community Ecology.
Community Ecology.
AP Biology Chapter 53 ~ Community Ecology.
Community Ecology Chapter 37.1 – 37.6.
Ch. 56 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
Community Ecology A community is a group of populations of different species living close enough to interact.
Community Ecology A community is a group of populations of different species living close enough to interact.
Lecture #23 Date ____ Chapter 53 ~ Community Ecology.
Community Ecology Chapter 54.
Ecology Chapter 53 ~ Community Ecology.
Lecture #23 Date ____ Chapter 53 ~ Community Ecology.
Lecture #23 Date ____ Chapter 53 ~ Community Ecology.
Lecture #23 Date ____ Chapter 53 ~ Community Ecology.
Introduction What is a Community?
AP Biology Chapter 54 Community Ecology.
Chapter 54 ~ Community Ecology
Population and Community Ecology
Ch. 54 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
CHAPTER 53 COMMUNITY ECOLOGY Section A: What Is a Community?
Chapter 41: Community Ecology
Ch. 54 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
Ch. 54 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
Ch. 54 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
Ch. 54 Warm-Up If a population has a birth rate of 0.07 and a death rate of 0.01, calculate the number of individuals added/subtracted from a population.
Warm-Up Define these Terms: Fundamental niche Realized niche Symbiosis
Presentation transcript:

CHAPTER 53 – COMMUNITY ECOLOGY Themes: Interaction with the environment Regulation Scientific Inquiry Evolution

Objectives: Rivet vs. Redundancy Models Populations are linked by competition, predation, mutualism, and commensalism Trophic structure is key in community dynamics Dominant and keystone species exert strong controls on a community Bottom-up (nutrients) vs. Top-down (predation) Most communities are in a state of nonequilibrium due to disturbances (Humans the typical agent) Species Richness – related to communities geographic size Community biodiversity – measures the # of species and their relative abundance

Root Words Crypto – Ecto – Endo – Herb – - vora Hetero – Inter – Mutu –

Community – all organisms that live in a particular area; many populations (different species) living close enough to have potential interaction. Coevolution – Reciprocal evolutionary adaptations in 2 species. (1) Example: Flowers and their pollinators (insects, birds). (a) Change in one species – new selective force for another species

Cryptic Coloration (camouflage); 3 types of mimicry; aposematic (Warning) coloration CamouflageDeception coloration

(E) Species richness- the number of species that a community contains. 1). This increases as you travel north from the South pole. (F) All of the following act to increase species diversity: 1). Keystone predators; patchy environments; moderate disturbances and migration of a population. (G) Herbivory – The consumption of plant material by a herbivore. (H) Creatures can defend themselves by such things as cryptic coloration; mobbing; hiding or fleeing.

Redundancy Model – Most of the species in a community are not tightly associated with each other, and the web of life is very loose. Thus, the increase or decrease of ones species in the community has little effect on the other species. 1. Example: If one predator disappears and then another predatory species will usually take its place. Rivet Model – that says that most species in a community are associated tightly with other species in a web. Thus increasing or decreasing one species in a community affects many other species. Community Models

Mimicry Systems depend on Defensive Behavior: a. The model is noxious or disagreeable, and easily recognized. b. The mimic is less common than their models. c. The ability of prey to “learn” characteristics of their predator. Mullerian mimicry – is when 2 dangerous organisms resemble each other. (like 2 poisonous snakes that resemble each other).

Ecologists consider STABILITY to be a measure of the ability of a community to either resist change or to recover its original state after change. Trophic structure of a community describes the feeding relationships within a community. Many plant species in communities seem to independently distributed.

(I.) Niche 1). Ecological niche – sum total of an organism’s use of biotic and abiotic resources in the environment. 2). Fundamental niche – resources a population theoretically is capable of using under ideal conditions. (a) Physiological limits of tolerance. (b) Absence of interaction with other organisms. 3). Realized Niche – Portion of the fundamental niche the organism actually uses. *(NOTE): Competition between species makes the difference between # 2 & 3.* 4). Need to know definitions and comparisons: parasitism, commensalism and mutualism

Fig – Resource Partitioning in a group of sympatric lizards Slight variations in a niche allow closely related species to coexist.

4 ?’s. on Fig Biogeographical Realms

(J) Competitive Exclusion Principle – 2 species cannot coexist in a community if their ecological niches are identical. Competition in Laboratory Populations of Paramecium. This is especially true if one species has a reproductive advantage over the other.

(K) Keystone Predator – exerts an important regulating effect on other species in a community. (1) Helps maintain higher species diversity (reduces strong competitors). (L) Species Equitability – The relative number of individuals in each species.

Ecological Succession Ecological Succession – Transition in species competition over time. (Yellowstone Fires – did not take long for vegetation to return) (A) Primary – no soil to forest ecosystem. Happens if soil is still intact. (B) Secondary – Existing community cleared by some disturbance (fire etc.) Happens if soil is still intact. (C ) Climax Community – last stage of succession (usually does not happen due to disturbance in a ecosystem). There may not be such a thing since most stable communities do not reach a stable climax diversity. Disturbances are ongoing in ecosystems. (D). This is due to continued disturbances in ecosystems.

E. Organisms sometimes induce succession 1 of 2 ways: 1. Inhibition – Early species prevent rather than assist colonization by other species. 2. Facilitation – One species actually “paves the way” for another species making the ecosystyem more favorable for the 2 nd species. Biogeography Study of past and present distribution of species. (All Flora & Fauna). 1. Island Biogeography – 5 ?’s (2 factors that determine the rate at which new species eventually inhabit an island.) (a). Rate of immigration. (b). Rate of extinction of species on the island.

(c). Major Features of Island Biogeography 1). If several islands are close together to the mainland, the largest island will have the greatest # of species & the lowest extinction rate. 2). Usually the smallest most distant island from the mainland will have the least # of species & lowest immigration rate.

Humans have caused the greatest disturbance and thus the greatest impact on ecosystems. Sympatric – Reproductively isolated subpopulation in the midst of its parent population. 1. Resource partitioning would most likely occur in sympatric populations of species with a similar ecological niche.