For Monday Finish chapter 14 Homework: –Chapter 13, exercises 8, 15.

Slides:



Advertisements
Similar presentations
Bayesian networks Chapter 14 Section 1 – 2. Outline Syntax Semantics Exact computation.
Advertisements

BAYESIAN NETWORKS Ivan Bratko Faculty of Computer and Information Sc. University of Ljubljana.
Bayesian Networks CSE 473. © Daniel S. Weld 2 Last Time Basic notions Atomic events Probabilities Joint distribution Inference by enumeration Independence.
BAYESIAN NETWORKS. Bayesian Network Motivation  We want a representation and reasoning system that is based on conditional independence  Compact yet.
1 Bayes nets Computing conditional probability Polytrees Probability Inferences Bayes nets Computing conditional probability Polytrees Probability Inferences.
Exact Inference in Bayes Nets
Uncertainty Everyday reasoning and decision making is based on uncertain evidence and inferences. Classical logic only allows conclusions to be strictly.
Identifying Conditional Independencies in Bayes Nets Lecture 4.
For Monday Read chapter 18, sections 1-2 Homework: –Chapter 14, exercise 8 a-d.
Introduction of Probabilistic Reasoning and Bayesian Networks
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) March, 16, 2009.
Bayesian network inference
Bayesian Networks Chapter 2 (Duda et al.) – Section 2.11
Bayesian Networks. Motivation The conditional independence assumption made by naïve Bayes classifiers may seem to rigid, especially for classification.
Probabilistic Reasoning Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 14 (14.1, 14.2, 14.3, 14.4) Capturing uncertain knowledge Probabilistic.
Bayesian networks Chapter 14 Section 1 – 2.
CSCI 5582 Fall 2006 CSCI 5582 Artificial Intelligence Lecture 14 Jim Martin.
Bayesian Belief Networks
1 Bayesian Reasoning Chapter 13 CMSC 471 Adapted from slides by Tim Finin and Marie desJardins.
Example applications of Bayesian networks
Bayesian Networks What is the likelihood of X given evidence E? i.e. P(X|E) = ?
Bayesian Networks Alan Ritter.
1 Bayesian Networks Chapter ; 14.4 CS 63 Adapted from slides by Tim Finin and Marie desJardins. Some material borrowed from Lise Getoor.
Bayesian Reasoning. Tax Data – Naive Bayes Classify: (_, No, Married, 95K, ?)
1 CMSC 471 Fall 2002 Class #19 – Monday, November 4.
For Monday after Spring Break Read Homework: –Chapter 13, exercise 6 and 8 May be done in pairs.
Probabilistic Reasoning
Quiz 4: Mean: 7.0/8.0 (= 88%) Median: 7.5/8.0 (= 94%)
Artificial Intelligence CS 165A Tuesday, November 27, 2007  Probabilistic Reasoning (Ch 14)
Bayesian networks Chapter 14. Outline Syntax Semantics.
1 CS 343: Artificial Intelligence Bayesian Networks Raymond J. Mooney University of Texas at Austin.
Artificial Intelligence CS 165A Thursday, November 29, 2007  Probabilistic Reasoning / Bayesian networks (Ch 14)
1 CS 391L: Machine Learning: Bayesian Learning: Beyond Naïve Bayes Raymond J. Mooney University of Texas at Austin.
Bayesian networks. Motivation We saw that the full joint probability can be used to answer any question about the domain, but can become intractable as.
1 Chapter 14 Probabilistic Reasoning. 2 Outline Syntax of Bayesian networks Semantics of Bayesian networks Efficient representation of conditional distributions.
For Wednesday Read Chapter 11, sections 1-2 Program 2 due.
2 Syntax of Bayesian networks Semantics of Bayesian networks Efficient representation of conditional distributions Exact inference by enumeration Exact.
Bayesian Statistics and Belief Networks. Overview Book: Ch 13,14 Refresher on Probability Bayesian classifiers Belief Networks / Bayesian Networks.
1 Monte Carlo Artificial Intelligence: Bayesian Networks.
Introduction to Bayesian Networks
Ch 8. Graphical Models Pattern Recognition and Machine Learning, C. M. Bishop, Revised by M.-O. Heo Summarized by J.W. Nam Biointelligence Laboratory,
1 CMSC 671 Fall 2001 Class #21 – Tuesday, November 13.
Marginalization & Conditioning Marginalization (summing out): for any sets of variables Y and Z: Conditioning(variant of marginalization):
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
For Friday Read Homework: –Chapter 10, exercise 22 I strongly encourage you to tackle this together. You may work in groups of up to 4 people.
Exact Inference in Bayes Nets. Notation U: set of nodes in a graph X i : random variable associated with node i π i : parents of node i Joint probability:
1 CMSC 671 Fall 2001 Class #20 – Thursday, November 8.
Today Graphical Models Representing conditional dependence graphically
CPSC 322, Lecture 26Slide 1 Reasoning Under Uncertainty: Belief Networks Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3) Nov, 13, 2013.
Conditional Independence As with absolute independence, the equivalent forms of X and Y being conditionally independent given Z can also be used: P(X|Y,
Chapter 12. Probability Reasoning Fall 2013 Comp3710 Artificial Intelligence Computing Science Thompson Rivers University.
CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016.
1 Chapter 6 Bayesian Learning lecture slides of Raymond J. Mooney, University of Texas at Austin.
Bayesian Networks Chapter 2 (Duda et al.) – Section 2.11 CS479/679 Pattern Recognition Dr. George Bebis.
CS 2750: Machine Learning Review
CS 2750: Machine Learning Directed Graphical Models
Reasoning Under Uncertainty: More on BNets structure and construction
Read R&N Ch Next lecture: Read R&N
Reasoning Under Uncertainty: More on BNets structure and construction
CSCI 121 Special Topics: Bayesian Networks Lecture #2: Bayes Nets
Read R&N Ch Next lecture: Read R&N
For Friday Read Chapter 11, section 3
CAP 5636 – Advanced Artificial Intelligence
Bayesian Statistics and Belief Networks
CS 188: Artificial Intelligence Fall 2007
CS 188: Artificial Intelligence
Class #16 – Tuesday, October 26
Hankz Hankui Zhuo Bayesian Networks Hankz Hankui Zhuo
Read R&N Ch Next lecture: Read R&N
Presentation transcript:

For Monday Finish chapter 14 Homework: –Chapter 13, exercises 8, 15

Program 3

Bayesian Reasoning with Independence (“Naïve” Bayes) If we assume that each piece of evidence (symptom) is independent given the diagnosis (conditional independence), then given evidence e as a sequence {e 1,e 2,…,e d } of observations, P(e | d i ) is the product of the probabilities of the observations given d i. The conditional probability of each individual symptom for each possible diagnosis can then be computed from a set of data or estimated by the expert. However, symptoms are usually not independent and frequently correlate, in which case the assumptions of this simple model are violated and it is not guaranteed to give reasonable results.

Bayes Independence Example Imagine there are diagnoses ALLERGY, COLD, and WELL and symptoms SNEEZE, COUGH, and FEVER Prob Well Cold Allergy P(d) P(sneeze|d) P(cough | d) P(fever | d)

If symptoms sneeze & cough & no fever: P(well | e) = (0.9)(0.1)(0.1)(0.99)/P(e) = /P(e) P(cold | e) = (.05)(0.9)(0.8)(0.3)/P(e) = 0.01/P(e) P(allergy | e) = (.05)(0.9)(0.7)(0.6)/P(e) = 0.019/P(e) Diagnosis: allergy P(e) = =.0379 P(well | e) =.23 P(cold | e) =.26 P(allergy | e) =.50

Problems with Probabilistic Reasoning If no assumptions of independence are made, then an exponential number of parameters is needed for sound probabilistic reasoning. There is almost never enough data or patience to reliably estimate so many very specific parameters. If a blanket assumption of conditional independence is made, efficient probabilistic reasoning is possible, but such a strong assumption is rarely warranted.

Practical Naïve Bayes We’re going to assume independence, so what numbers do we need? Where do the numbers come from?

Bayesian Networks Bayesian networks (belief network, probabilistic network, causal network) use a directed acyclic graph (DAG) to specify the direct (causal) dependencies between variables and thereby allow for limited assumptions of independence. The number of parameters need for a Bayesian network are generally much less compared to making no independence assumptions.

More on CPTs Probability of false is not given since rows must sum to 1. Requires 10 parameters rather than 2 5 =32 (actually only 31 since all 32 values must sum to 1) Therefore, the number of probabilities needed for a node is exponential in the number of parents (the fan­in).

Noisy-Or Nodes To avoid specifying the complete CPT, special nodes that make assumptions about the style of interaction can be used. A noisy­or node assumes that the parents are independent causes that are noisy, i.e. there is some probability that they will not cause the effect. The noise parameter for each cause indicates the probability it will not cause the effect. Probability that the effect is not present is the product of the noise parameters of all the parent nodes that are true (since independence is assumed). P(Fever|Cold) =0.4,P(Fever|Flu) =0.8,P(Fever| Malaria)=0.9 P(Fever | Cold  Flu  ¬Malaria) = * 0.2 = 0.88 Number of parameters needed is linear in fan­in rather than exponential.

Independencies If removing a subset of nodes S from the network renders nodes X i and X j disconnected, then X i and X j are independent given S, i.e. P(X i | X j, S) = P(X i | S) However, this is too strict a criteria for conditional independence since two nodes will still be considered independent if there simply exists some variable that depends on both. (i.e. Burglary and Earthquake should be considered independent since the both cause Alarm)

Unless we know something about a common effect of two “independent causes” or a descendent of a common effect, then they can be considered independent. For example,if we know nothing else, Earthquake and Burglary are independent. However, if we have information about a common effect (or descendent thereof) then the two “independent” causes become probabilistically linked since evidence for one cause can “explain away” the other. If we know the alarm went off, then it makes earthquake and burglary dependent since evidence for earthquake decreases belief in burglary and vice versa.

Types of Connections Given a triplet of variables x, y, z where x is connected to z via y, there are 3 possible connection types: –tail­to­tail: x  y  z –head­to­tail: x  y  z, or x  y  z –head­to­head: x  y  z For tail­to­tail and head­to­tail connections, x and z are independent given y. For head­to­head connections, x and z are “marginally independent” but may become dependent given the value of y or one of its descendents (through “explaining away”).

Separation A subset of variables S is said to separate X from Y if all (undirected) paths between X and Y are separated by S. A path P is separated by a subset of variables S if at least one pair of successive links along P is blocked by S. Two links meeting head­to­tail or tail­to­tail at a node Z are blocked by S if Z is in S. Two links meeting head­to­head at a node Z are blocked by S if neither Z nor any of its descendants are in S.

Probabilistic Inference Given known values for some evidence variables, we want to determine the posterior probability of of some query variables. Example: Given that John calls, what is the probability that there is a Burglary? John calls 90% of the time there is a burglary and the alarm detects 94% of burglaries, so people generally think it should be fairly high (80­90%). But this ignores the prior probability of John calling. John also calls 5% of the time when there is no alarm. So over the course of 1,000 days we expect one burglary and John will probably call. But John will also call with a false report 50 times during 1,000 days on average. So the call is about 50 times more likely to be a false report P(Burglary | JohnCalls) ~ Actual probability is since the alarm is not perfect (an earthquake could have set it off or it could have just went off on its own). Of course even if there was no alarm and John called incorrectly, there could have been an undetected burglary anyway, but this is very unlikely.

Types of Inference Diagnostic (evidential, abductive): From effect to cause. P(Burglary | JohnCalls) = P(Burglary | JohnCalls  MaryCalls) = 0.29 P(Alarm | JohnCalls  MaryCalls) = 0.76 P(Earthquake | JohnCalls  MaryCalls) = 0.18 Causal (predictive): From cause to effect P(JohnCalls | Burglary) = 0.86 P(MaryCalls | Burglary) = 0.67

More Types of Inference Intercausal (explaining away): Between causes of a common effect. P(Burglary | Alarm) = P(Burglary | Alarm  Earthquake) = Mixed: Two or more of the above combined (diagnostic and causal) P(Alarm | JohnCalls  ¬Earthquake) = 0.03 (diagnostic and intercausal) P(Burglary | JohnCalls  ¬Earthquake) = 0.017

Inference Algorithms Most inference algorithms for Bayes nets are not goal­directed and calculate posterior probabilities for all other variables. In general, the problem of Bayes net inference is NP­hard (exponential in the size of the graph).

Polytree Inference For singly­connected networks or polytrees, in which there are no undirected loops (there is at most one undirected path between any two nodes), polynomial (linear) time algorithms are known. Details of inference algorithms are somewhat mathematically complex, but algorithms for polytrees are structurally quite simple and employ simple propagation of values through the graph.

Belief Propagation Belief propogation and updating involves transmitting two types of messages between neighboring nodes: – messages are sent from children to parents and involve the strength of evidential support for a node. –  messages are sent from parents to children and involve the strength of causal support.

Propagation Details Each node B acts as a simple processor which maintains a vector (B) for the total evidential support for each value of the corresponding variable and an analagous vector  (B) for the total causal support. The belief vector BEL(B) for a node, which maintains the probability for each value, is calculated as the normalized product: BEL(B) =  (B)  (B)

Propogation Details (cont.) Computation at each node involve and  message vectors sent between nodes and consists of simple matrix calculations using the CPT to update belief (the and  node vectors) for each node based on new evidence. Assumes CPT for each node is a matrix (M) with a column for each value of the variable and a row for each conditioning case (all rows must sum to 1).