Chemistry 125: Lecture 52 February 17, 2010 Additions by Radicals & Electrophilic Carbon; Isoprenoids; and Polymer Properties This For copyright notice.

Slides:



Advertisements
Similar presentations
Chemistry 125: Lecture 70 April 19, 2010 Acyl Compounds (Ch. 18) -H Reactivity (Ch. 19) This For copyright notice see final page of this file.
Advertisements

Chemistry 125: Lecture 46 February 1, 2010 E2, S N 1, E1 This For copyright notice see final page of this file.
Hydrocarbon Molecules
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry This For copyright notice see final page of this.
Industrial chemistry Kazem.R.Abdollah Rubber 1.
Chemistry 125: Lecture 60 March 23, 2011 NMR Spectroscopy Chemical Shift and Diamagnetic Anisotropy, Spin-Spin Coupling This For copyright notice see final.
Chemistry 125: Lecture 52 February 16, 2011 Transition Metal Catalysis: Hydrogenation & Polymerization Additions by Radicals & Electrophilic Carbon; Isoprenoids;
Chemistry 125: Lecture 49 February 10, 2010 Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final page.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 68 April 14, 2010 Mitsunobu Reaction Acids and Acid Derivatives This For copyright notice see final page of this file.
Chemistry 125: Lecture 48 February 8, 2010 Addition to Alkenes a Physical-Organic MO Perspective This For copyright notice see final page of this file.
Chemistry 125: Lecture 69 April 14, 2011 Measuring Bond Energies This For copyright notice see final page of this file.
Chemistry 125: Lecture 16 October 9, 2009 Reaction Analogies and Carbonyl Reactivity Comparing the low LUMOs that make both HF and CH 3 F acidic underlines.
Chemistry 125: Lecture 51 February 15, 2010 More Addition to Alkenes: Organometallic Reagents and Catalysts This For copyright notice see final page of.
Chemistry 125: Lecture 64 April 7, 2010 Carbonyl Compounds Preliminary This For copyright notice see final page of this file.
Chemistry 125: Lecture 55 February 24, 2010 (4n+2) Aromaticity Cycloaddition Electrocyclic Reactions This For copyright notice see final page of this file.
Chemistry 125: Lecture 61 March 26, 2010 NMR Spectroscopy Through-Space Coupling, Decoupling & Correlation This For copyright notice see final page of.
Chemistry 125: Lecture 44 January 27, 2010 Nucleophilic Substitution and Mechanistic Tools: Rate Law & Rate Constant This For copyright notice see final.
Chemistry 125: Lecture 34 Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes Professor Barry Sharpless of Scripps Research Institute describes.
Chemistry 125: Lecture 43 January 25, 2010 Solvation, Ionophores and Brønsted Acidity This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 9, 2010 Oxidizing/Reducing Reagents Bookeeping & Mechanism This For copyright notice see final page of this file.
Chemistry 125: Lecture 52 February 16, 2011 Transition Metal Catalysis: Hydrogenation & Polymerization Additions by Radicals & Electrophilic Carbon; Isoprenoids;
Chemistry 125: Lecture 73 April 28, 2010 Benzoin, Claisen, Robinson (Ch. 19) Two Un-Natural Products This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 6, 2011 Carbonyl Chemistry: Imines & Enamines Oxidation/Reduction & Electron Transfer This For copyright notice see final.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 47 February 5, 2010 Addition to Alkenes a Synthetic Perspective guest lecture by Prof. Jay S. Siegel Universit ä t Zurich This For.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 40 January 15, 2010 Predicting Rate Constants, and Reactivity - Selectivity Relation. Rates of Chain Reactions. This For copyright.
Chemistry 125: Lecture 64 April 2, 2010 Carbonyl Compounds Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 65 April 7, 2010 Addition to C=O Mechanism & Equilibrium Protecting Groups Oxidation/Reduction & Electron Transfer This For copyright.
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry Preliminary more coming This For copyright notice.
Chemistry 125: Lecture 17 Reaction Analogies and Carbonyl Reactivity In molecular orbital terms there is a close analogy among seemingly disparate organic.
Chemistry 125: Lecture 57 March 3, 2010 Normal Modes: Mixing and Independence in Infrared Spectroscopy This For copyright notice see final page of this.
Chemistry 125: Lecture 69 April 16, 2010 Decarboxylation (Ch. 17) and Acyl Compounds (Ch. 18) This For copyright notice see final page of this file.
Chemistry 125: Lecture 36 December 7, 2009 Bond Energies Group- or bond-additivity schemes are useful for understanding heats of formation, especially.
Chemistry 125: Lecture 54 February 22, 2010 Linear and Cyclic Conjugation Allylic Intermediates (4n+2) Aromaticity This For copyright notice see final.
Chemistry 125: Lecture 67 April 11, 2011 Triphenylmethyl Spectra Friedel-Crafts Revisited Oxidizing/Reducing Scheme Alcohol Oxidation Mechanism This For.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 50 February 12, 2010 More Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 53 February 18, 2011 Isoprenoids Tuning Polymer Properties Acetylenes Preliminary This For copyright notice see final page of this.
Synchronize when the speaker finishes saying, “…despite Earnshaw...” Synchrony can be adjusted by using the pause(||) and run(>) controls. Chemistry 125:
Chemistry 125: Lecture 64 April 1, 2011 Triphenylmethyl Carbonyl Compounds: Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 62 March 29, 2010 Electrophilic Aromatic Substitution This For copyright notice see final page of this file.
Chemistry 125: Lecture 60 March 24, 2010 NMR Spectroscopy Isotropic J and Dynamics This For copyright notice see final page of this file.
Chemistry 125: Lecture 65 April 4, 2011 Addition to C=O Mechanism & Equilibrium Protecting Groups Imines This For copyright notice see final page of this.
Chemistry 125: Lecture 56 February 25, 2011 Generalized Aromaticity Cycloaddition – Diels-Alder Electrocyclic Stereochemistry Dewar Benzene This For copyright.
© 2011 Pearson Education, Inc. 1 Organic Chemistry 6 th Edition Paula Yurkanis Bruice Chapter 27 The Organic Chemistry of Lipids.
26.7 Terpenes: The Isoprene Rule
1 TERPENES. 2 TERPENES The Czech chemist Leopold Ruzicka ( born 1887) showed that many compounds found in nature were formed from multiples of five carbons.
Chemistry 2100 Lecture 2.
Chemistry 125: Lecture 53 February 18, 2011 Isoprenoids Tuning Polymer Properties This For copyright notice see final page of this file.
Terpenes: The Isoprene Rule. Terpenes Terpenes are natural products that are structurally related to isoprene. H2CH2CH2CH2C C CH 3 CH CH 2 or Isoprene.
Chemistry 125: Lecture 71 April 20, 2011 Acids and Acid Derivatives Decarboxylation (J&F Ch. 17) Acyl Compounds (J&F Ch. 18) This For copyright notice.
Chemistry 125: Lecture 50 February 11, 2011 Electrophilic Addition with Nucleophilic Participation Cycloaddition Epoxides This For copyright notice see.
Chem 125 Lecture 48 2/9/09 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chemistry 125: Lecture 17 October 8, 2010 Carbonyl, Amide, Carboxylic Acid, and Alkyl Lithium The first “half” of the semester ends by analyzing four functional.
Chemistry 125: Lecture 48 February 7, 2011 Alkenes: Stability and Addition Mechanisms Electrophilic Addition This For copyright notice see final page of.
Mitsunobu Reaction Acids and Acid Derivatives
Condensations (J&F Ch. 19) Fischer’s Glucose Proof - Introduction
Chem 125 Lecture 65 4/6/08 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chapter 11 Lecture PowerPoint
Chemistry 125: Lecture 49 February 9, 2011 Electrophilic Addition with Nucleophilic Participation This For copyright notice see final page of this file.
The Organic Chemistry of Lipids
Imines & Enamines Oxidation/Reduction & Electron Transfer
Friedel-Crafts Revisited Oxidizing/Reducing Scheme
Terpenes: The Isoprene Rule
Acyl Insertions (J&F Ch. 18)
Diamagnetic Anisotropy, Spin-Spin Coupling
HBr Addition to Alkenes and its “Regiochemistry”
Presentation transcript:

Chemistry 125: Lecture 52 February 17, 2010 Additions by Radicals & Electrophilic Carbon; Isoprenoids; and Polymer Properties This For copyright notice see final page of this file

Radical Polymerization Sec 11.5 ( ) R H Occasional butyl side-chains inhibit close packing.

ClCCl 3 RCl CCl 3 Controlling Polymer Chain Length CCl 4 is a “Chain-Transfer Agent” shortens polymer molecules without terminating chain reaction Properties like viscosity and melting point depend on chain length. etc. Cl k transfer /k polymerization ~ 0.01 for styrene polymerization        When other termination is negligible, molecular length ~ k p [styrene] / k t [CCl 4 ] “dispersity”

Alkene Oligomerization and Polymerization Using Carbon Electrophiles R+R+ (S N 1) R-LR-L ** (S N 2) (“oligo”, a few)

CH 3 H2CH2CC H C H2CH2CC R + Electrophile in Formation of 2,2,4-Trimethylpentane, “Isooctane” CH 3 CH H2CH2CC CCH 2 CH 3 HC H 2 SO 4 + CH 3 C + C + CH 2 C H + (defined as “100 octane”) inter molecular hydride shift (Bartlett, 1944) chain poly(isobutylene) “butyl rubber” air-tight + CH 3 CH 2 C CH 3 C CH 2 C etc.

Sec pp R-L and R + Electrophiles in ** Terpene/Steroid Biogenesis

Isopentenyl Pyrophosphate Dimethylallyl Pyrophosphate Adjacent unsaturation apparently speeds S N 2 (as well as S N 1) Cl I benzyl 250 Cl allyl 90 Cl n-propyl k rel for rxn with I - in acetone [1] Cl

Isopentenyl Pyrophosphate Geranyl Pyrophosphate C5C5 C 10

Geranyl Pyrophosphate cis trans Neryl Pyrophosphate Limonene -H +  -Pinene -H + +H 2 O [Ox] Camphor "Terpene" essential oils C 10 Markovnikov anti-Markovnikov

Geranyl Pyrophosphate Farnesyl Pyrophosphate "head-to-head reductive dimerization" Squalene (shark liver oil) new bond C 15 “sesquiterpenes” C 30 “triterpenes” e.g. caryophyllene (clove, hemp, rosemary)

+ Squalene H HO O Markovnikov Anti- Markovnikov Enzyme makes “O” selective among many trisubstituted alkene groups.

Squalene HO H H H CH 3 H H H + H3CH3C H3CH3C H3CH3C Lanosterol (source of cholesterol & steroid hormones) Not this time! (enzyme control) C 30 “triterpenes” 3°

Squalene HO H H H CH 3 H H H + H3CH3C H3CH3C H3CH3C Lanosterol (source of cholesterol & steroid hormones) Not this time! (enzyme control) C 30 “triterpenes” 3° Cute Story Is it True? (Wait for NMR)

2 Isoprenes Isoprene H OH Geraniol “dimer” H OH

Isoprene OH 2 Isoprenes Menthol “dimer” OH

Isoprene O 4 Isoprenes Retinal “tetramer” O

Latex “polymer” Isoprene 30,000 Isoprenes

Hevea braziliensis

Latex to Caoutchouc

Gooey in heat Brittle in cold Thomas Hancock (England -1820) “Masticator” Goodyear (1839) Vulcanization Charles Macintosh (Scotland ) Sandwiched rubber between cloth layers for waterproof garments

Discovery of Vulcanization 1839

The occurrence did not at the time seem to them to be worthy of notice; it was considered as one of the frequent appeals that he was in the habit of making, in behalf of some new experiment.” He endeavoured to call the attention of his brother, as well as some other individuals who were present, and who were acquainted with the manufacture of gum-elastic, to this effect, as remarkable, and unlike any before known, since gum-elastic always melted when exposed to a high degree of heat. “He was surprised to find that the specimen, being carelessly brought into contact with a hot stove, charred like leather. Discovery of Vulcanization from Goodyear’s Autobiographical “Gum-Elastic” (1855)

Silliman consult “Having seen experiments made, and also performed them myself, with the India rubber prepared by Mr. Charles Goodyear, I can state that it does not melt, but rather chars, by heat, and that it does not stiffen by cold, but retains its flexibility with cold, even when laid between cakes of ice.” B. Silliman October 14, 1839

U.S. Pavilion Crystal Palace (1851)

Goodyear’s Vulcanite Court India Rubber Desk Mattatuck Museum, Waterbury

Somehow Vulcanization joins adjacent chains with sulfur “cross-links” S Latex polymer Radical Addition and Allylic Substitution? H ?

Vulcanization and the Physical Properties of Polymers

Gough

wordsworth “ No floweret blooms Throughout the lofty range of these rough hills, Nor in the woods, that could from him conceal Its birth-place; none whose figure did not live Upon his touch.” Wordsworth “Excursion” (1813) ( )

John Gough Heating rubber makes it expand (more than H 2 O).

Heating tightly stretched rubber makes it contract !

If stretching rubber generates heat, what should letting it contract do? A) If heat comes from internal friction, contraction should also cause friction and generate heat. B) If heat comes from some other cause, contraction may do the opposite and absorb heat (“generate cold”).

Why?

Goodyear Plot

Goodyear Inventor

Goodyear to Gibbs

Gibbs Mathematical Physics

Gibbs to Onsager

Kirkwood & Onsager

Polymer Statistical Mechanics

Statistics Contracts a Stretched Chain etc. only one arrangement of maximum lengthmany arrangement of shorter length

Near maximum extension there is local Crystallization Stretching Rigidity Contributes Rigidity Releases Heat Fixed, irregular cross-links between adjacent chains prevents crystallization (and brittleness) in the cold. Warming “melts” the crystalline regions, and allows statistics to make the material contract. Absorbing heat “melts” the crystalline regions, and allows statistics to make the material contract.

Lengthwise Motion by “Reptation” Change shape by snaking along a tunnel through the tangled neighbors. How to make a tangle flow?

Sulfur Cross-Links Stop Reptation Vulcanization (no flow when hot) and inhibit crystallization. (not brittle when cold)

Vulcanization in the Home

End of Lecture 52 Feb. 17, 2010 Copyright © J. M. McBride Some rights reserved. Except for cited third-party materials, and those used by visiting speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0).Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0) Use of this content constitutes your acceptance of the noted license and the terms and conditions of use. Materials from Wikimedia Commons are denoted by the symbol. Third party materials may be subject to additional intellectual property notices, information, or restrictions. The following attribution may be used when reusing material that is not identified as third-party content: J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0