Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3

Slides:



Advertisements
Similar presentations
Spin order in correlated electron systems
Advertisements

Theory of probing orbitons with RIXS
University of California at Berkeley – Physics Department March APS Meeting, Portland, OR – March 17, 2010 Thermodynamic measurements of iron-rhodium alloys.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Electronic structure of La2-xSrxCuO4 calculated by the
Lattice instability in frustrated systems Maxim Mostovoy MPI, Stuttgart Groningen, April 22, 2004 D. Khomskii, Cologne J. Knoester, Groningen R. Moessner,
Physics of multiferroic hexagonal manganites RMnO 3 Je-Geun Park Sungkyunkwan University KIAS 29 October 2005.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Symmetry and Mechanism of Multiferroicity in Frustrated Magnets 黃迪靖 and 牟中瑜 Resonant soft x-ray scattering Ginzburg-Landau approach.
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1,2], H. A. Fertig [3,4], K. J. Mullen [2], S. Simon [5] [1]
First Principles Calculations of Complex Oxide Perovskites David-Alexander Robinson Sch., Theoretical Physics, The University of Dublin, Trinity College.
INTERATOMIC SPIN-ORBIT COUPLING: A MECHANISM FOR SPIN- SPIRAL-CAUSED FERROELECTRICITY T. A. Kaplan and S. D. Mahanti Michigan State University APS March,
Magnetism III: Magnetic Ordering
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Materials Process Design and Control Laboratory ON THE DEVELOPMENT OF WEIGHTED MANY- BODY EXPANSIONS USING AB-INITIO CALCULATIONS FOR PREDICTING STABLE.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
1 Li Xiao and Lichang Wang Department of Chemistry & Biochemistry Southern Illinois University Carbondale The Structure Effect of Pt Clusters on the Vibrational.
Monte Carlo study of small deposited clusters from first principles L. Balogh, L. Udvardi, L. Szunyogh Department of Theoretical Physics, Budapest University.
Atomic-scale Engeered Spins at a Surface
On the spin orientation 1. Qualitative rules for predicting preferred spin orientations? 2. Spin orientations of Sr 3 NiIrO 6, Sr 2 IrO 4, Ba 2 NaOsO 6.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Berry Phase Effects on Electronic Properties
University of Wisconsin-Madison Department of Materials Science and Engineering Opportunities for Coherent Scattering in Ferroelectrics and Multiferroics.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Magnetic transitions of multiferroics revealed by photons 黃迪靖 同步輻射研究中心 清華大學物理系 May 9, 2007 Multiferroicity Soft x-ray magnetic scattering Magnetic transitions.
Exchange splitting in electronic states of single atoms and magnetic coupling in single dimers and trimers on a surface Mats Persson (1), Hyo-June Lee.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Magnetic Neutron Diffraction the basic formulas
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
KIAS workshop Sept 1, 2008 A tale of two spin chiralities in frustrated spin systems Jung Hoon Han (SungKyunKwan U, Korea)
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Magnetic properties and NMR data of Rb2MnCl4, RbMnCl3 Kang, Byeongki
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
Optical pure spin current injection in graphene Julien Rioux * and Guido Burkard Department of Physics, University of Konstanz, D Konstanz, Germany.
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Materials Process Design and Control Laboratory ON THE DEVELOPMENT OF WEIGHTED MANY- BODY EXPANSIONS USING AB-INITIO CALCULATIONS FOR PREDICTING STABLE.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Recontres du Vietnam August 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
KIAS Emergent Materials 2006 Bond Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. Reference: cond-mat/0607 Collaboration Chenglong.
Spin-orbit interaction in semiconductor quantum dots systems
Model for B Site Ordering in PMN Eric Cockayne Benjamin P. Burton Material Measurement Laboratory, NIST, Gaithersburg.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Orbital Ordering and Exchange Interactions in RMnO 3 Perovskites J. B. Goodenough, U.T. Austin DMR
4/8/2015PHY 752 Spring Lecture 291 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 29:  Chap. 22 in Marder & pdf file on.
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
Crucial interactions in BaIrO 3 : Spin-orbit coupling and Coulomb correlation W.W. Ju ( 琚伟伟 ) and Z. Q. Yang*( 杨中芹 ) Abstract The electronic structures.
Axion electrodynamics on the surface of topological insulators
Jeroen van den Brink LaOFeAs -- multiferroic manganites Krakaw 19/6/2008 Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Address: 2401 East building Guanghua tower Phone: Magnetic and spin polarized transport properties.
Image © NPG Rogério de Sousa
Effect of partial Ti substitution at Zn sites on the Structural, Electronic and Magnetic Properties of Zn3P2 G. Jaiganesh and S. Mathi Jaya Materials Science.
Electronic polarization. Low frequency dynamic properties.
Half-Metallic Ferromagnetism in Fe-doped Zn3P2 From First-Principles Calculations G. JAI GANESH and S. MATHI JAYA Materials Science Group, Indira Gandhi.
Effects of Si on the Electronic Properties of the Clathrates
Spin-Peierls Effect on Frustrated Spin Systems
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
Ⅱ HOMO-LUMO gap and dispersion of HOMO
Rashba splitting of graphene on Ni, Au, or Ag(111) substrates
Presentation transcript:

Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3 First-Principles Study of Large Magnetoelectric Coupling in Triangular Lattices Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3 Materials Research Laboratory, University of California, Santa Barbara, USA Zernike Institute for Advanced Materials, University of Groningen, The Netherlands Materials Department, University of California, Santa Barbara, USA kdelaney@mrl.ucsb.edu 03.13.2008 Supported by NSF MRSEC Award No. DMR05-20415

Magnetoelectrics Linear Magnetoelectric tensor: Non-zero a requires T,I symmetry breaking Size limit (in bulk): M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005)

Magnetoelectric Symmetry Requirements Which materials break time-reversal AND space-inversion symmetry? ferroelectric ferromagnets MULTIFERROICS certain anti-ferromagnets OR + Large ε, μ  potentially large α - Few materials at room T NA Hill, JPCB 104, 6694 (2000) + Many materials - Weak - relies on S.O. Our route: superexchange-driven magnetoelectric coupling

Anderson-Kanamori-Goodenough rules: Superexchange Mn-O-Mn Superexchange Superexchange magnetoelectricity: θ Anderson-Kanamori-Goodenough rules: J(θ=90º)<0 (FM) J(θ=180º)>0 (AFM) S1 S2 E=0 E E

Superexchange-driven Magnetoelectricity Can occurs in geometrically frustrated AFM Route to bulk materials Mechanism: Anderson-Kanamori-Goodenough rules: J(θ=90º)<0 (FM) J(θ=180º)>0 (AFM)

“Antimagnetoelectric” Kagomé Lattices E M=0 “Antimagnetoelectric” E=0 Example Spin Structure

Triangular Lattices in Real Materials YMnO3 Structure: BAS B. VAN AKEN et al, Nature Materials 3, 164 (2004)

Breaking Self Compensation: No Vertex Sharing Break self compensation: One triangle sense per layer CaAlMn3O7

Calculation Details Vienna Ab initio Simulation Package (VASP) [1] Density functional theory (DFT) Plane-wave basis; periodic boundary conditions Local spin density approximation (LSDA) Hubbard U for Mn d electrons (U=5.5 eV, J=0.5 eV) [3] PAW Potentials [2] Non-collinear Magnetism No spin-orbit interaction Finite electric field Ionic response only Forces = Z*E Z* from Berry Phase [4] Invert force matrix to deduce DR [1] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). [2] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). [3] Z. Yang et al, Phys. Rev. B 60, 15674 (1999). [4] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

DFT-LDA Electronic Structure; E=0 Crystal-field splitting and occupations for high-spin Mn3+ Ground-state magnetic structure from LSDA+U dz2 3d dx2-y2 dxy dxz dyz Local moment = 4μB/Mn Net magnetization = 0 μB

Magnetoelectric Coupling Magnetoelectric Response: Compare: Cr2O3 E m small effect: E field of 106 V/cm produces M equivalent to reversing 5 out of 106 spins in the AFM lattice

Conclusions Superexchange-driven Magnetoelectricity: Proposed new structure Triangular lattice: uniform orientation in each plane No vertex sharing with triangles of opposite sense Key: avoid self-compensation in periodic systems New materials under investigation

Electric Field Application (Ionic Response) Force on ion in applied electric field: where Force-constant Matrix Equilibrium under applied field (assume linear):