Glycolysis Biochemistry of Metabolism

Slides:



Advertisements
Similar presentations
CARBOHYDRATE METABOLISM
Advertisements

Chemistry of Glycolysis
DR AMINA TARIQ BIOCHEMISTRY
Glycolysis Glucose utilization in cells of higher plants and animals.
Regulation of Glycolysis & Gluconeogenesis
Regulation of Glycolysis & Gluconeogenesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry I.
Overview of catabolic pathways
Glycolysis Copyright © by Joyce J. Diwan. All rights reserved. Biochemistry of Metabolism.
The Overall Pathway of Glycolysis
GLYCOLYSIS. General features of Glycolysis 1.Anaerobic degradation of hexose sugar 2.Conversion of.
CHAPTER 14 Glucose Utilization and Biosynthesis –Harnessing energy from glucose via glycolysis –Fermentation under anaerobic conditions –Synthesis of glucose.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 19 Glycolysis to accompany Biochemistry, 2/e by Reginald Garrett.
GlycolysisGluconeogenesis. Glycolysis - Overview One of best characterized pathways Characterized in the first half of 20th century Glucose --> 2 pyruvates.
GLYCOLYSIS Student Edition 5/30/13 version
Fig 10.5 Overview of catabolic pathways Prentice Hall c2002 Chapter 11.
Glycolysis 1: Glycolysis consists of two stages, an ATP investment stage, and an ATP earnings stage Bioc 460 Spring Lecture 25 (Miesfeld) Lactate.
Prentice Hall c2002Chapter 111 Chapter 11 Glycolysis & Chapter 12 Citric Acid Cycle Lectures 19: Glycolysis (I) October 17, 2003 Haining Zhu Dept. of Molecular.
Bioc 460 Spring Lecture 25 (Miesfeld)
Cellular Biochemistry and Metabolism (CLS 331) Dr. Samah Kotb Nasr Eldeen.
Glycolysis. The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms of enzyme conversion.
We eat, we digest, we absorb, then what? Three fates for nutrients 1)Most are used to supply energy for life 2)Some are used to synthesize structural or.
GLYCOLYSIS Glucose ATP Hexokinase ADP Glucose 6-phosphate
Carbohydrate metabolism. CHO supply Diet Endogenous reserves –Liver –Muscle –Blood Limited Anaerobic glycolysis –Anaerobic Does not need oxygen Occurs.
CHAPTER 16 Glycolysis.
Glycolysis and Gluconeogenesis Dr M. D. Lloyd 5W 2.13;
Bioenergetics and Glycolysis Getting the E out of C.
Glycolysis Anaerobic degradation of glucose to yield lactate or ethanol and CO 2.
Chapter 21 Carbohydrate Metabolism Denniston Topping Caret 6 th Edition Copyright  The McGraw-Hill Companies, Inc. Permission required for reproduction.
Gluconeogenesis; Regulation of Glycolysis & Gluconeogenesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry I.
Glycolysis Chapter 16 – Voet and Voet 2 nd Edition Wed. September 25, The Glycolytic Pathway 2. The Reactions of Glycolysis 3. Fermentation: The.
Glycolysis Biochemistry of Metabolism. Glycolysis takes place in the cytosol of cells. Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate.
Chapter 17 Glycolysis Mary K. Campbell Shawn O. Farrell Paul D. Adams University of Arkansas.
Cellular Respiration (Chapter 9). Energy Plants, algae & some bacteria Convert radiant energy (sun) into chemical energy (glucose)
Glycolysis: Energy Generation Without an Oxygen Requirement
Glycolysis 5/9/03. Glycolysis The conversion of glucose to pyruvate to yield 2ATP molecules 10 enzymatic steps Chemical interconversion steps Mechanisms.
G l i k o l i z ..
The preparatory phase yields 2 molecules of glyceraldehyde 3 phosphate
Chapter 16, Stryer Short Course
Glycolysis Under Anaerobic Conditions
The preparatory phase uses 2 ATP and converts 1 glucose to 2 molecules of GAP Glucose + 2ATP  2GAP + 2ADP + 2H+ isomerization.
Glycolysis.
Cellular Biochemistry and metabolism 2 Lecturer of Biochemistry
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Recall that there are 2 G3P per glucose.. Exergonic oxidation of the aldehyde in glyceraldehyde-3- phosphate, to a carboxylic acid, drives formation of.
Glycolysis Apr. 5, 2016 CHEM 281. The Overall Pathway of Glycolysis  Glycolysis is the first stage of glucose catabolism  One molecule of glucose gives.
GLYCOLYSIS Learning objectives: List the enzymes and intermediates involved in glycolysis List the irreversible and regulated steps of glycolysis Discuss.
Carbohydrate Catabolism
Glycolysis. Anaeorbic process Converts hexose to two pyruvates Generates 2 ATP and 2 NADH For certain cells in the brain and eye, glycolysis is the only.
Carbohydrate Metabolism Glycolysis
Digestion and absorption of carbohydrate
METABOLISM OF CARBOHYDRATES: GLYCOLYSIS
Glycolysis I 11/03/09.
The Overall Pathway of Glycolysis
22.4 Glycolysis: Oxidation of Glucose
Glycolysis Biochemistry of Metabolism
Glycolysis Derived from the Greek stem glyk-, "sweet," and the word lysis,"dissolution."
2 pyruvate + 4ATP + 2H2O + 2NADH
A Road Map for Cellular Respiration
Metabolism: Glycolysis
Under anaerobic conditions, the NADH cannot be reoxidized through the respiratory chain to oxygen. Pyruvate is reduced by the NADH to lactate,catalyzed.
GLYCOLYSIS Presented by,R.Shalini Msc.,Microbiology
Glycolysis Glucose utilization in cells of higher plants and animals.
Glycolysis.
Reginald Garrett and Charles Grisham
Chapter Seventeen Glycolysis.
Biochemistry of Metabolism Glycolysis
3. GLYCOLYSIS.
Chapter Seventeen Glycolysis.
Biochemistry of Metabolism
Glycolysis.
Presentation transcript:

Glycolysis Biochemistry of Metabolism Copyright © 1998-2004 by Joyce J. Diwan. All rights reserved.

Glycolysis takes place in the cytosol of cells. Glucose enters the Glycolysis pathway by conversion to glucose-6-phosphate. Initially there is energy input corresponding to cleavage of two ~P bonds of ATP.

1. Hexokinase catalyzes: Glucose + ATP  glucose-6-P + ADP The reaction involves nucleophilic attack of the C6 hydroxyl O of glucose on P of the terminal phosphate of ATP. ATP binds to the enzyme as a complex with Mg++.

Mg++ interacts with negatively charged phosphate oxygen atoms, providing charge compensation & promoting a favorable conformation of ATP at the active site of the Hexokinase enzyme.

The reaction catalyzed by Hexokinase is highly spontaneous. A phosphoanhydride bond of ATP (~P) is cleaved. The phosphate ester formed in glucose-6-phosphate has a lower DG of hydrolysis.

Induced fit: Binding of glucose to Hexokinase promotes a large conformational change by stabilizing an alternative conformation in which: the C6 hydroxyl of the bound glucose is close to the terminal phosphate of ATP, promoting catalysis. water is excluded from the active site. This prevents the enzyme from catalyzing ATP hydrolysis, rather than transfer of phosphate to glucose. 

It is a common motif for an enzyme active site to be located at an interface between protein domains that are connected by a flexible hinge region. The structural flexibility allows access to the active site, while permitting precise positioning of active site residues, and in some cases exclusion of water, as substrate binding promotes a particular conformation.

2. Phosphoglucose Isomerase catalyzes: glucose-6-P (aldose)  fructose-6-P (ketose) The mechanism involves acid/base catalysis, with ring opening, isomerization via an enediolate intermediate, and then ring closure. A similar reaction catalyzed by Triosephosphate Isomerase will be presented in detail.

3. Phosphofructokinase catalyzes: fructose-6-P + ATP  fructose-1,6-bisP + ADP This highly spontaneous reaction has a mechanism similar to that of Hexokinase. The Phosphofructokinase reaction is the rate-limiting step of Glycolysis. The enzyme is highly regulated, as will be discussed later.

4. Aldolase catalyzes: fructose-1,6-bisphosphate  dihydroxyacetone-P + glyceraldehyde-3-P The reaction is an aldol cleavage, the reverse of an aldol condensation. Note that C atoms are renumbered in products of Aldolase.

A lysine residue at the active site functions in catalysis. The keto group of fructose-1,6-bisphosphate reacts with the e-amino group of the active site lysine, to form a protonated Schiff base intermediate. Cleavage of the bond between C3 & C4 follows.

5. Triose Phosphate Isomerase (TIM) catalyzes: dihydroxyacetone-P  glyceraldehyde-3-P Glycolysis continues from glyceraldehyde-3-P. TIM's Keq favors dihydroxyacetone-P. Removal of glyceraldehyde-3-P by a subsequent spontaneous reaction allows throughput.

The ketose/aldose conversion involves acid/base catalysis, and is thought to proceed via an enediol intermediate, as with Phosphoglucose Isomerase. Active site Glu and His residues are thought to extract and donate protons during catalysis.

2-Phosphoglycolate is a transition state analog that binds tightly at the active site of Triose Phosphate Isomerase (TIM). This inhibitor of catalysis by TIM is similar in structure to the proposed enediolate intermediate. TIM is judged a "perfect enzyme." Reaction rate is limited only by the rate that substrate collides with the enzyme.

Triosephosphate Isomerase structure is an ab barrel, or TIM barrel. In an ab barrel there are 8 parallel b-strands surrounded by 8 a-helices. Short loops connect alternating b-strands & a-helices.

TIM barrels serve as scaffolds for active site residues in a diverse array of enzymes. Residues of the active site are always at the same end of the barrel, on C-terminal ends of b-strands & loops connecting these to a-helices. There is debate whether the many different enzymes with TIM barrel structures are evolutionarily related. In spite of the structural similarities there is tremendous diversity in catalytic functions of these enzymes and little sequence homology.

Explore the structure of the Triosephosphate Isomerase (TIM) homodimer, with the transition state inhibitor 2-phosphoglycolate bound to one of the TIM monomers. Note the structure of the TIM barrel, and the loop that forms a lid that closes over the active site after binding of the substrate.

6. Glyceraldehyde-3-phosphate Dehydrogenase catalyzes: glyceraldehyde-3-P + NAD+ + Pi  1,3-bisphosphoglycerate + NADH + H+

Exergonic oxidation of the aldehyde in glyceraldehyde- 3-phosphate, to a carboxylic acid, drives formation of an acyl phosphate, a "high energy" bond (~P). This is the only step in Glycolysis in which NAD+ is reduced to NADH.

A cysteine thiol at the active site of Glyceraldehyde-3-phosphate Dehydrogenase has a role in catalysis. The aldehyde of glyceraldehyde-3-phosphate reacts with the cysteine thiol to form a thiohemiacetal intermediate.

Oxidation to a carboxylic acid (in a ~ thioester) occurs, as NAD+ is reduced to NADH. The “high energy” acyl thioester is attacked by Pi to yield the acyl phosphate (~P) product.

Recall that NAD+ accepts 2 e- plus one H+ (a hydride) in going to its reduced form.

7. Phosphoglycerate Kinase catalyzes: 1,3-bisphosphoglycerate + ADP  3-phosphoglycerate + ATP This phosphate transfer is reversible (low DG), since one ~P bond is cleaved & another synthesized. The enzyme undergoes substrate-induced conformational change similar to that of Hexokinase.

8. Phosphoglycerate Mutase catalyzes: 3-phosphoglycerate  2-phosphoglycerate Phosphate is shifted from the OH on C3 to the OH on C2.

An active site histidine side-chain participates in Pi transfer, by donating & accepting the phosphate. The process involves a 2,3-bisphosphate intermediate. View an animation of the Phosphoglycerate Mutase reaction.

9. Enolase catalyzes 2-phosphoglycerate  phosphoenolpyruvate + H2O This Mg++-dependent dehydration reaction is inhibited by fluoride. Fluorophosphate forms a complex with Mg++ at the active site.

10. Pyruvate Kinase catalyzes: phosphoenolpyruvate + ADP  pyruvate + ATP

This phosphate transfer from PEP to ADP is spontaneous. PEP has a larger DG of phosphate hydrolysis than ATP. Removal of Pi from PEP yields an unstable enol, which spontaneously converts to the keto form of pyruvate. Required inorganic cations K+ and Mg++ bind to anionic residues at the active site of Pyruvate Kinase.

Glycolysis continued. Recall that there are 2 GAP per glucose.

Glycolysis Balance sheet for ~P bonds of ATP: How many ATP ~P bonds expended? ________ How many ~P bonds of ATP produced? (Remember there are two 3C fragments from glucose.) ________ Net production of ~P bonds of ATP per glucose: ________ 2 4 2

Balance sheet for ~P bonds of ATP: 2 ATP expended 4 ATP produced (2 from each of two 3C fragments from glucose) Net production of 2 ~P bonds of ATP per glucose. Glycolysis - total pathway, omitting H+: glucose + 2 NAD+ + 2 ADP + 2 Pi  2 pyruvate + 2 NADH + 2 ATP In aerobic organisms: pyruvate produced in Glycolysis is oxidized to CO2 via Krebs Cycle NADH produced in Glycolysis & Krebs Cycle is reoxidized via the respiratory chain, with production of much additional ATP. 

Fermentation: Anaerobic organisms lack a respiratory chain. They must reoxidize NADH produced in Glycolysis through some other reaction, because NAD+ is needed for the Glyceraldehyde-3-phosphate Dehydrogenase reaction. Usually NADH is reoxidized as pyruvate is converted to a more reduced compound, that may be excreted. The complete pathway, including Glycolysis and the reoxidation of NADH, is called fermentation.

E.g., Lactate Dehydrogenase catalyzes reduction of the keto in pyruvate to a hydroxyl, yielding lactate, as NADH is oxidized to NAD+. Skeletal muscles ferment glucose to lactate during exercise, when aerobic metabolism cannot keep up with energy needs. Lactate released to the blood may be taken up by other tissues, or by muscle after exercise, and converted via the reversible Lactate Dehydrogenase back to pyruvate, e.g., for entry into Krebs Cycle.

Lactate is also a significant energy source for neurons in the brain. Astrocytes, which surround and protect neurons in the brain, ferment glucose to lactate and release it. Lactate taken up by adjacent neurons is converted to pyruvate that is oxidized via Krebs Cycle.

Some anaerobic organisms metabolize pyruvate to ethanol, which is excreted as a waste product. NADH is converted to NAD+ in the reaction catalyzed by Alcohol Dehydrogenase.

Glycolysis, omitting H+: glucose + 2 NAD+ + 2 ADP + 2 Pi  2 pyruvate + 2 NADH + 2 ATP Fermentation, from glucose to lactate: glucose + 2 ADP + 2 Pi  2 lactate + 2 ATP Anaerobic catabolism of glucose yields only 2 “high energy” bonds of ATP.

Glycolysis Enzyme/Reaction DGo' kJ/mol DG kJ/mol Hexokinase -20.9 -27.2 Phosphoglucose Isomerase +2.2 -1.4 Phosphofructokinase -17.2 -25.9 Aldolase +22.8 -5.9 Triosephosphate Isomerase +7.9 negative Glyceraldehyde-3-P Dehydrogenase & Phosphoglycerate Kinase -16.7 -1.1 Phosphoglycerate Mutase +4.7 -0.6 Enolase -3.2 -2.4 Pyruvate Kinase -23.0 -13.9 *Values in this table from D. Voet & J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & Sons, New York, p. 613.

Three Glycolysis enzymes catalyze spontaneous reactions: Hexokinase, Phosphofructokinase & Pyruvate Kinase. Control of these enzymes determines the rate of the Glycolysis pathway. Local control involves dependence of enzyme-catalyzed reactions on concentrations of pathway substrates or intermediates within a cell. Global control involves hormone-activated production of second messengers that regulate cellular reactions for the benefit of the organism as a whole. Local control of Hexokinase and Phosphofructokinase will be discussed here. Regulation by hormone-activated cAMP signal cascade will be discussed later.

Hexokinase is inhibited by its product glucose-6-phosphate. Glucose-6-phosphate inhibits by competition at the active site, as well as by allosteric interactions at a separate site on the enzyme.

Cells trap glucose by phosphorylating it, preventing exit on glucose carriers. Product inhibition of Hexokinase ensures that cells will not continue to accumulate glucose from the blood, if [glucose-6-phosphate] within the cell is ample.

Glucokinase, a variant of Hexokinase found in liver, has a high KM for glucose. It is active only at high [glucose]. Glucokinase is not subject to product inhibition by glucose-6-phosphate. Liver will take up & phosphorylate glucose even when liver [glucose-6-phosphate] is high. Liver Glucokinase is subject to inhibition by glucokinase regulatory protein (GKRP). The ratio of Glucokinase to GKRP changes in different metabolic states, providing a mechanism for modulating glucose phosphorylation.

Glucokinase, with its high KM for glucose, allows the liver to store glucose as glycogen, in the fed state when blood [glucose] is high.

Glucose-6-phosphatase catalyzes hydrolytic release of Pi from glucose-6-P. Thus glucose is released from the liver to the blood as needed to maintain blood [glucose]. The enzymes Glucokinase & Glucose-6-phosphatase, both found in liver but not in most other body cells, allow the liver to control blood [glucose].

Phosphofructokinase is usually the rate-limiting step of the Glycolysis pathway. Phosphofructokinase is allosterically inhibited by ATP. At low concentration, the substrate ATP binds only at the active site. At high concentration, ATP binds also at a low-affinity regulatory site, promoting the tense conformation.

The tense conformation of PFK, at high [ATP], has lower affinity for the other substrate, fructose-6-P. Sigmoidal dependence of reaction rate on [fructose-6-P] is seen. AMP, present at significant levels only when there is extensive ATP hydrolysis, antagonizes effects of high ATP.

Inhibition of the Glycolysis enzyme Phosphofructokinase when [ATP] is high prevents breakdown of glucose in a pathway whose main role is to make ATP. It is more useful to the cell to store glucose as glycogen when ATP is plentiful.