Lecture 15 Two-Factor Analysis of Variance (Chapter 15.5)

Slides:



Advertisements
Similar presentations
Ch 14 實習(2).
Advertisements

Siti Nor Jannah bt Ahmad Siti Shahida bt Kamel Zamriyah bt Abu Samah.
Chapter 11 Analysis of Variance
Statistics for Managers Using Microsoft® Excel 5th Edition
Analysis of Variance Chapter Introduction Analysis of variance compares two or more populations of interval data. Specifically, we are interested.
Chapter 11 Analysis of Variance
Example –A radio station manager wants to know if the amount of time his listeners spent listening to a radio per day is about the same every day of the.
Statistics for Business and Economics
Statistics for Managers Using Microsoft® Excel 5th Edition
Analysis of Variance Chapter Introduction Analysis of variance compares two or more populations of interval data. Specifically, we are interested.
Lecture 14 Analysis of Variance Experimental Designs (Chapter 15.3)
Lecture 16 Two-factor Analysis of Variance (Chapter 15.5) Homework 4 has been posted. It is due Friday, March 21 st.
Lecture 13 Multiple comparisons for one-way ANOVA (Chapter 15.7)
Analysis of Variance Chapter 15 - continued Two-Factor Analysis of Variance - Example 15.3 –Suppose in Example 15.1, two factors are to be examined:
Lecture 10 Inference about the difference between population proportions (Chapter 13.6) One-way analysis of variance (Chapter 15.2)
Chapter 17 Analysis of Variance
Lecture 12 One-way Analysis of Variance (Chapter 15.2)
Chapter 11 Analysis of Variance
1 Power Fifteen Analysis of Variance (ANOVA). 2 Analysis of Variance w One-Way ANOVA Tabular Regression w Two-Way ANOVA Tabular Regression.
Copyright ©2011 Pearson Education 11-1 Chapter 11 Analysis of Variance Statistics for Managers using Microsoft Excel 6 th Global Edition.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Analysis of Variance Statistics for Managers Using Microsoft.
Chap 10-1 Analysis of Variance. Chap 10-2 Overview Analysis of Variance (ANOVA) F-test Tukey- Kramer test One-Way ANOVA Two-Way ANOVA Interaction Effects.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 11-1 Chapter 11 Analysis of Variance Statistics for Managers using Microsoft Excel.
Chapter 12: Analysis of Variance
1 1 Slide © 2005 Thomson/South-Western AK/ECON 3480 M & N WINTER 2006 n Power Point Presentation n Professor Ying Kong School of Analytic Studies and Information.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Statistics Design of Experiment.
Statistics for Business and Economics Chapter 8 Design of Experiments and Analysis of Variance.
QNT 531 Advanced Problems in Statistics and Research Methods
12-1 Chapter Twelve McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
© 2003 Prentice-Hall, Inc.Chap 11-1 Analysis of Variance IE 340/440 PROCESS IMPROVEMENT THROUGH PLANNED EXPERIMENTATION Dr. Xueping Li University of Tennessee.
Analysis of Variance Chapter 12 Introduction Analysis of variance compares two or more populations of interval data. Specifically, we are interested.
Analysis of Variance ( ANOVA )
© 2002 Prentice-Hall, Inc.Chap 9-1 Statistics for Managers Using Microsoft Excel 3 rd Edition Chapter 9 Analysis of Variance.
Analysis of Variance ST 511 Introduction n Analysis of variance compares two or more populations of quantitative data. n Specifically, we are interested.
Economics 173 Business Statistics Lectures 9 & 10 Summer, 2001 Professor J. Petry.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
CHAPTER 12 Analysis of Variance Tests
Chapter 10 Analysis of Variance.
Business Statistics: Contemporary Decision Making, 3e, by Black. © 2001 South-Western/Thomson Learning 11-1 Business Statistics, 3e by Ken Black Chapter.
ENGR 610 Applied Statistics Fall Week 9
Chapter 15 Analysis of Variance ( ANOVA ). Analysis of Variance… Analysis of variance is a technique that allows us to compare two or more populations.
TOPIC 11 Analysis of Variance. Draw Sample Populations μ 1 = μ 2 = μ 3 = μ 4 = ….. μ n Evidence to accept/reject our claim Sample mean each group, grand.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Analysis of Variance Statistics for Managers Using Microsoft.
1 Analysis of Variance Chapter 14 2 Introduction Analysis of variance helps compare two or more populations of quantitative data. Specifically, we are.
ANALYSIS OF VARIANCE (ANOVA) BCT 2053 CHAPTER 5. CONTENT 5.1 Introduction to ANOVA 5.2 One-Way ANOVA 5.3 Two-Way ANOVA.
Copyright © 2009 Cengage Learning 14.1 Chapter 14 Analysis of Variance.
Lecture 9-1 Analysis of Variance
Chapter 10: Analysis of Variance: Comparing More Than Two Means.
Chapter 11 Analysis of Variance. 11.1: The Completely Randomized Design: One-Way Analysis of Variance vocabulary –completely randomized –groups –factors.
Chapter 4 Analysis of Variance
CHAPTER 3 Analysis of Variance (ANOVA) PART 3 = TWO-WAY ANOVA WITH REPLICATION (FACTORIAL EXPERIMENT) MADAM SITI AISYAH ZAKARIA EQT 271 SEM /2015.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
CHAPTER 3 Analysis of Variance (ANOVA) PART 3 = TWO-WAY ANOVA WITH REPLICATION (FACTORIAL EXPERIMENT)
Chapter 11 Analysis of Variance
Keller: Stats for Mgmt & Econ, 7th Ed Analysis of Variance
CHAPTER 4 Analysis of Variance (ANOVA)
MADAM SITI AISYAH ZAKARIA
Statistics for Managers Using Microsoft Excel 3rd Edition
Two-Way Analysis of Variance Chapter 11.
Factorial Experiments
CHAPTER 4 Analysis of Variance (ANOVA)
Chapter 10: Analysis of Variance: Comparing More Than Two Means
Statistics for Business and Economics (13e)
ANalysis Of VAriance (ANOVA)
Chapter 11 Analysis of Variance
Presentation transcript:

Lecture 15 Two-Factor Analysis of Variance (Chapter 15.5)

Oneway Analysis of Sales By Strategy Comparisons for all pairs using Tukey-Kramer HSD Abs(Dif)-LSD QualityPriceConv. Quality Price Conven Positive values show pairs of means that are significantly different.

BlocksTreatmentsb-1MST / MSEMSB / MSE Conclusion: At 5% significance level there is sufficient evidence to infer that the mean “cholesterol reduction” gained by at least two drugs are different. K-1 Randomized Blocks ANOVA - Example

15.5 Two-Factor Analysis of Variance - Example 15.3 –Suppose in Example 15.1, two factors are to be examined: The effects of the marketing strategy on sales. –Emphasis on convenience –Emphasis on quality –Emphasis on price The effects of the selected media on sales. –Advertise on TV –Advertise in newspapers

Solution –We may attempt to analyze combinations of levels, one from each factor using one-way ANOVA. –The treatments will be: Treatment 1: Emphasize convenience and advertise in TV Treatment 2: Emphasize convenience and advertise in newspapers ……………………………………………………………………. Treatment 6: Emphasize price and advertise in newspapers Attempting one-way ANOVA

Solution –The hypotheses tested are: H 0 :  1 =  2 =  3 =  4 =  5 =  6 H 1 : At least two means differ. Attempting one-way ANOVA

City1 City2 City3 City4City5City6 Convnce Convnce Quality Quality Price Price TVPaper TV Paper TV Paper – In each one of six cities sales are recorded for ten weeks. – In each city a different combination of marketing emphasis and media usage is employed. Solution Attempting one-way ANOVA

The p-value = We conclude that there is evidence that differences exist in the mean weekly sales among the six cities. City1 City2 City3 City4City5City6 Convnce Convnce Quality Quality Price Price TVPaper TV Paper TV Paper Solution Xm15-03 Attempting one-way ANOVA

These result raises some questions: –Are the differences in sales caused by the different marketing strategies? –Are the differences in sales caused by the different media used for advertising? –Are there combinations of marketing strategy and media that interact to affect the weekly sales? Interesting questions – no answers

The current experimental design cannot provide answers to these questions. A new experimental design is needed. Two-way ANOVA (two factors)

City 1 sales City3 sales City 5 sales City 2 sales City 4 sales City 6 sales TV Newspapers ConvenienceQualityPrice Are there differences in the mean sales caused by different marketing strategies? Factor A: Marketing strategy Factor B: Advertising media

Test whether mean sales of “Convenience”, “Quality”, and “Price” significantly differ from one another. H 0 :  Conv. =  Quality =  Price H 1 : At least two means differ Calculations are based on the sum of square for factor A SS(A) Two-way ANOVA (two factors)

City 1 sales City 3 sales City 5 sales City 2 sales City 4 sales City 6 sales Factor A: Marketing strategy Factor B: Advertising media Are there differences in the mean sales caused by different advertising media? TV Newspapers ConvenienceQualityPrice

Test whether mean sales of the “TV”, and “Newspapers” significantly differ from one another. H 0 :  TV =  Newspapers H 1 : The means differ Calculations are based on the sum of square for factor B SS(B) Two-way ANOVA (two factors)

City 1 sales City 5 sales City 2 sales City 4 sales City 6 sales TV Newspapers ConvenienceQualityPrice Factor A: Marketing strategy Factor B: Advertising media Are there differences in the mean sales caused by interaction between marketing strategy and advertising medium? City 3 sales TV Quality

Test whether mean sales of certain cells are different than the level expected. Calculation are based on the sum of square for interaction SS(AB) Two-way ANOVA (two factors)

Levels of factor A 123 Level 1 of factor B Level 2 of factor B Level 1and 2 of factor B Difference between the levels of factor A No difference between the levels of factor B Difference between the levels of factor A, and difference between the levels of factor B; no interaction Levels of factor A No difference between the levels of factor A. Difference between the levels of factor B Interaction M R e s a p n o n s e M R e s a p n o n s e M R e s a p n o n s e M R e s a p n o n s e

Sums of squares

F tests for the Two-way ANOVA Test for the difference between the levels of the main factors A and B F= MS(A) MSE F= MS(B) MSE Rejection region: F > F ,a-1,n-ab F > F , b-1, n-ab Test for interaction between factors A and B F= MS(AB) MSE Rejection region: F > F  a-1)(b-1),n-ab SS(A)/(a-1) SS(B)/(b-1) SS(AB)/(a-1)(b-1) SSE/(n-ab)

Required conditions: 1.The response distributions is normal 2.The treatment variances are equal. 3.The samples are independent random samples.

Example 15.3 – continued( Xm15-03) Xm15-03 F tests for the Two-way ANOVA

Example 15.3 – continued –Test of the difference in mean sales between the three marketing strategies H 0 :  conv. =  quality =  price H 1 : At least two mean sales are different F tests for the Two-way ANOVA Factor A Marketing strategies

Example 15.3 – continued –Test of the difference in mean sales between the three marketing strategies H 0 :  conv. =  quality =  price H 1 : At least two mean sales are different F = MS(Marketing strategy)/MSE = 5.33 F critical = F ,a-1,n-ab = F.05,3-1,60-(3)(2) = 3.17; (p-value =.0077) –At 5% significance level there is evidence to infer that differences in weekly sales exist among the marketing strategies. F tests for the Two-way ANOVA MS(A)  MSE

Example continued –Test of the difference in mean sales between the two advertising media H 0 :  TV. =  Nespaper H 1 : The two mean sales differ F tests for the Two-way ANOVA Factor B = Advertising media

Example continued –Test of the difference in mean sales between the two advertising media H 0 :  TV. =  Nespaper H 1 : The two mean sales differ F = MS(Media)/MSE = 1.42 F critical = F  a-1,n-ab = F.05,2-1,60-(3)(2) = 4.02 (p-value =.2387) –At 5% significance level there is insufficient evidence to infer that differences in weekly sales exist between the two advertising media. F tests for the Two-way ANOVA MS(B)  MSE

Example continued –Test for interaction between factors A and B H 0 :  TV*conv. =  TV*quality =…=  newsp.*price H 1 : At least two means differ F tests for the Two-way ANOVA Interaction AB = Marketing*Media

Example continued –Test for interaction between factor A and B H 0 :  TV*conv. =  TV*quality =…=  newsp.*price H 1 : At least two means differ F = MS(Marketing*Media)/MSE =.09 F critical = F  a-1)(b-1),n-ab = F.05,(3-1)(2-1),60-(3)(2) = 3.17 (p-value=.9171) –At 5% significance level there is insufficient evidence to infer that the two factors interact to affect the mean weekly sales. MS(AB)  MSE F tests for the Two-way ANOVA