ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University.

Slides:



Advertisements
Similar presentations
Institute for Plasma Physics Rijnhuizen Heat load asymmetries in MAST G. De Temmerman a,b, A. Kirk a, E, Nardon a, P. Tamain a, A. Thornton a a Present.
Advertisements

Progress with PWI activities at UKAEA Fusion GF Counsell, A Kirk, E Delchambre, S Lisgo, M Forrest, M Price, J Dowling, F Lott, B Dudson, A Foster,
Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Thermal Load Specifications from ITER C. Kessel ARIES Project Meeting, May 19, 2010 UCSD.
Barbora Gulejová 1 of 12 Centre de Recherches en Physique des Plasmas SPS Annual Meeting in Lausanne, 14/2/2006 SOLPS5 modelling of ELMing H-mode on TCV.
APS-DPP-2005-LeBlanc-1 Update on MPTS B.P. LeBlanc Princeton Plasma Physics Laboratory NSTX Results Review July 26-27, 2006 Princeton, NJ.
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
High speed images of edge plasmas in NSTX IEA Workshop Edge Transport in Fusion Plasmas September 11-13, 2006 Kraków, Poland GPI outer midplane – shot.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Real time operation of MAST TS diagnostic S. Shibaev, G. Naylor, R. Scannell,
Physics of fusion power Lecture 11: Diagnostics / heating.
13th IEA/RFP Workshop – Stockholm October 9-11, D characterization of thermal core topology changes in controlled RFX-mod QSH states A. Alfier on.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
11 th European Fusion Physics Conference, Aix-en-Provence, France, Samuli Saarelma, Edge stability in tokamak plasmas Edge stability in tokamak.
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
pkm- NCSX CDR, 5/21-23/ Power and Particle Handling in NCSX Peter Mioduszewski 1 for the NCSX Boundary Group: for the NCSX Boundary Group: M. Fenstermacher.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
XP-746: ELM characterization in NSTX R. J. Maqueda Nova Photonics Inc. and the NSTX Research Team ’07 Results Review July 23-24, 2007 PPPL.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
Edge ECE measurements with the AUG CTS receiver and the effects of ELMs during H-mode Morten Stejner.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
The principle of SAMI and some results in MAST 1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, , China 2. Culham Centre.
TITLE: Scaling of the far SOL turbulence as a function of (1), the average density keeping other plasma parameters constant. (3), the plasma current keeping.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
Flow and Shear behavior in the Edge and Scrape- off Layer in NSTX L-Mode Plasmas Y. Sechrest and T. Munsat University of Colorado at Boulder S. J. Zweben.
1 Results and analysis of Gas Puff Imaging experiments in NSTX: turbulence, L-H transitions, ELMs and other phenomena R.J. Maqueda Nova Photonics S.J.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
1 Blobs in the divertor region R. J. Maqueda (Nova Photonics) Although some understanding is emerging on the generation and evolution of blobs from the.
A. Kirk, ITPA Pedestal meeting, GA, 30 April H-mode pedestal characteristics on MAST A.Kirk, T. O’Gorman, R. Scannell Addition of new data at low.
Recent Results of KSTAR
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
بسمه تعالی Fast Imaging of turbulent plasmas in the GyM device D.Iraji, D.Ricci, G.Granucci, S.Garavaglia, A.Cremona IFP-CNR-Milan 7 th Workshop on Fusion.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Presentation on prioritisation of DIVSOL proposals for M9 Andrew Kirk.
R. A. Pitts et al. 1 (12) IAEA, Chengdu Oct ELM transport in the JET scrape-off layer R. A. Pitts, P. Andrew, G. Arnoux, T.Eich, W. Fundamenski,
RFX-mod Program Workshop, Padova, January Current filaments in turbulent magnetized plasmas E. Martines.
Hiroshi Tojo, IAEA TM/ISTW2008, Frascati, Italy, October 2008 Features of High Frequency Mode during Internal Reconnection Events on MAST Graduate School.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
1 L.W. Yan, Overview on HL-2A, 23rd IAEA FEC, Oct. 2010, Daejeon, Republic of Korea HL-2A 2 nd Asia-Pacific Transport Working Group Meeting ELM mitigation.
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
Parallel Correlation of SOL Turbulence S.J. Zweben, F. Scotti, J.W. Ahn, T. Gray, M. Jaworski, S. Kubota, R. Maqueda, N. Mandell, D. Smith, V. Soukhanovskii.
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
Confinement & Transport Plan Classical theory of confinement and transport. o Diffusion equation Particle diffusion in a magnetic field.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
Enhanced D  H-mode on Alcator C-Mod presented by J A Snipes with major contributions from M Greenwald, A E Hubbard, D Mossessian, and the Alcator C-Mod.
1Field-Aligned SOL Losses of HHFW Power and RF Rectification in the Divertor of NSTX, R. Perkins, 11/05/2015 R. J. Perkins 1, J. C. Hosea 1, M. A. Jaworski.
بسمه تعالی Fast Imaging of turbulent plasmas in the GyM device D.Iraji, D.Ricci, G.Granucci, S.Garavaglia, A.Cremona IFP-CNR-Milan 7 th Workshop on Fusion.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
T. Biewer, March 3 rd, 2003NSTX Physics Meeting Measurements of Edge Impurity Ion Dynamics During RF Heating T. M. Biewer, R.E. Bell March 3 rd, 2003 NSTX.
Initial Results from the Scintillator Fast Lost Ion Probe D. Darrow NSTX Physics Meeting February 28, 2005.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
Andrew Kirk on behalf of
Development and Analysis of Gas Puff CXRS in SOL
Measuring the Dynamics of Injected Boron Dust Particles in the Scrape-Off Layer Aaron Bader Dec 14, 2006 Ideas Forum 2007.
Divertor & SOL Characterisation with Visible Imaging
Presentation transcript:

ELM Filament Propogation Measurements on MAST A. Kirk a, N. B. Ayed b, B. Dudson c, R. Scannel d (a) UKAEA Culham, (b) University of York, (c) University of Oxford, (d) University of Cork Presented by S. Lisgo UKAEA Culham / University of Toronto 7th ITPA D-SOL meeting Toronto Nov 6–10, 2006

INTRODUCTION Research summary – ELM story – MHD trigger (peeling / ballooning mode, …) – pedestal transport – filament formation,separation from the pedestal, propagation through the SOL – Currently, trying to understand filament transport characteristics – toroidal mode number – toroidal / radial velocities – fraction of the pedestal energy lost during an ELM,  W/W ped, that is carried by filaments after separation – Principal diagnostics – Photron fast camera (up to 250,000 Hz, 1+  s integration time) – outer mid-plane reciprocating probe (fast Langmuir triple probe + magnetics) – outer mid-plane edge Thomson scattering system (4 lasers, 1+  s between pulses) – Recent results reported on here – ELM’s generated at substantially lower  * ped than reported previously – filament field-line mapping at high Photron frame rates (100,000 Hz) – observations of ELM filaments in the outer divertor

ELMS AT REDUCED PEDESTAL COLLISIONALITY First observations from MAST low  * ped H-mode – New “record” for MAST: T e,ped = 435  20 eV – scenario: immediately after boronization, tailored fuelling, increased beam power (2.5 MW) – (previously, MAST data differentiated by low aspect ratio and high pedestal collisionality) ITER

ELMS AT REDUCED PEDESTAL COLLISIONALITY Mid-plane reciprocating probe (stationary) j sat measurements – No obvious dependence of j sat, radial decay scale length, or  v r  on * ped –  t for  v r  based on D  signal, i.e. single “start time” for all filaments associated with a particular ELM – preliminary data, only ~5 shots

MAPPING FILAMENTS TO FIELD LINES Full frame image (raw)

– Filaments are aligned to magnetic field lines – EFIT error is assumed to be systematic

MAPPING FILAMENTS TO FIELD LINES Mid-plane images – Reduce window size to increase frame rate, follow filament movement – 100 kHz – (mapping a bit of an “art” with smaller window size) – radial position within  2 cm (maybe better), toroidal position to  1 degree – no filamentary structures observed inside LCFS (yet, will try with HeII filter)

MAPPING FILAMENTS TO FIELD LINES Filament propagation – Toroidal rotation goes to ~0 before filament leaves LCFS – v r goes from 0 at LCFS to 1–3 km s -1 – Filaments leave LCFS at different times

ENERGY CONTENT OF FILAMENTS (ELECTRONS ONLY) Characterization of filament plasma with Thomson scattering – High resolution edge TS shows separation from pedestal – outer mid-plane measurement – 5  s between laser pulses – (recall: filament stopped rotating before leaving LCFS, and prior, only rotates ~ ??? cm toroidally before leaving LCFS, significantly less than 5–10 cm characteristic filament toroidal extent) – Generally, each filament contains  2.5% of  W ELM (assuming T i = T e )

DIVERTOR FILAMENTS ELM filament imaging in the outer divertor

– Spiral pattern away from strike-point – the “wall” on most devices – non-rotating filaments generate spiral pattern due to radial q shear – target radial “footprint” may not be representative of upstream radial size

SUMMARY Recent results and future plans – Filament propagation on MAST appears to be independent of * ped – (preliminary results only!) – Filaments do not all leave the LCFS at the same time – Each filament carries  2.5% of  W ped (again, assuming T i = T e ???) – Re-work camera optics to get larger field-of-view into a smaller window, improving accuracy of field line mapping at high frame rates – Filter for HeII light, which radiates in the pedestal on MAST (may not be bright enough, even with additional seeding we’ll see…)