Chap. 24 Problem 1 The difference between a benign tumor and a malignant one mostly involves the latter's ability to invade and metastasize to other tissues.

Slides:



Advertisements
Similar presentations
Cancer—Principles and overview By Robert A. Weinberg
Advertisements

Alterations in the Cell Cycle and Gene Mutations that Cause Cancer
Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors.
Chapter 19 Lecture Concepts of Genetics Tenth Edition Cancer and Regulation of the Cell Cycle.
Introduction to Oncology Dr. Saleh Unit 9 R.E.B, 4MedStudents.com 2003.
neoplasia III tumour genetics MOLECULAR BASIS OF CANCER
Lecture 11: Signalling for Life/Death 1)Describe the eukaryotic cell cycle and the purpose of checkpoints. 2)Describe the role of cyclins and cyclin-dependent.
Dr MOHAMED FAKHRY MOLECULAR BASIS OF CANCER.
CHAPTER 16 Cancer.
A signal transducer and cancer Neurofibromin, ras, and cancer - utah.
Cancer Biology. 2 Outline 1.How do cancer cells differ from normal cells? Tumor progression Molecular basis for cancer.
Theories of cancer genesis
34 Cancer.
Lecture 23 Signal Transduction 2
BioSci 145A lecture 18 page 1 © copyright Bruce Blumberg All rights reserved BioSci 145A Lecture 18 - Oncogenes and Cancer Topics we will cover today.
Copyright (c) by W. H. Freeman and Company Chapter 24 Cancer.
Molecular Pathology – Cell cycle Dr. Leonard Da Silva Senior Lecturer Molecular & Cellular Pathology.
Lecture 10: Cell Communication II. GPCR signaling is inactivated by arrestins.
Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes : Describe cancer – diseases in which cells no longer respond Describe how cancers.
Tumor Supressor Gene Non-functional TSG Mutations increasing risk of cancer “Loss of function” mutation Proto-oncogene Oncogene (Hyperactive or unregulated.
Chap. 24 Cancer Topics Goals Tumor Cells and the Onset of Cancer
Tumor genetics Minna Thullberg
NOTES: CH 18 part 2 - The Molecular Biology of Cancer
3.1.3.A Understanding Cancer What is Cancer.
Cancer.
Chapter 28 Oncogenes and cancer.
Neoplasia Lecture 3 Dr. Maha Arafah Dr. Abdulmalik Alsheikh, MD, FRCPC.
Cancer --an Overview  Cell Division  Hormones and Cancer  Malignant Transformation  Angiogenesis and Metastasis  Growth.
Neoplasia Lecture 4 Dr. Maha Arafah Dr. Abdulmalik Alsheikh, MD, FRCPC CARCINOGENESIS Foundation block 2014 Pathology.
Cancer &Oncogenes. Objectives Define the terms oncogene, proto-oncogenes and growth factors giving examples. Describe the mechanisms of activations of.
Cancer Tumor Cells and the Onset of Cancer
Cell Cycle and Cancer.
Cancer When cell division goes wrong……. Growing out of control, cancer cells produce malignant tumors Cancer is a general term for many diseases in.
Cancer occurs when there is a loss in the control of the cell cycle. There are many controls of the cell cycle. There are many types of cancer.
Gihan E-H Gawish, MSc, PhD Ass. Professor Molecular Genetics and Clinical Biochemistry Molecular Genetics and Clinical BiochemistryKSU 8 TH WEEK.
Genetics of Cancer Genetic Mutations that Lead to Uncontrolled Cell Growth.
Essentials of Biology Sylvia S. Mader
Genetics of Cancer Lecture 34.
Benign Versus Malignant Tumors
Javad Jamshidi Fasa University of Medical Sciences, November 2015 Session 9 Medical Genetics Cancer Genetics.
CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: The.
Javad Jamshidi Fasa University of Medical Sciences, December 2015 Cancer Genetics Session 4 Medical Genetics.
Dr. Hiba Wazeer Al Zou’bi
Oncogenes Lecture 43BSCI 420,421,620Dec 13, 2002 “It ain’t over till the fat lady sings” – Joe Gibbs 1.Cancer-critical genes a. Oncogenes b. Tumor-suppressor.
Neoplasia 4 Dr. Hiba Wazeer Al Zou’bi. 4- Nuclear Transcription Factors: DNA transcription regulated by genes e.g. MYC, MYB, JUN, FOS, REL oncogenes 
Types of Genes Associated with Cancer
Neoplasia Epidemiology Epidemiology Will help to discover aetiology Will help to discover aetiology Planning of preventive measures Planning of preventive.
Chapter 11 Cancer Genetics. Cell responses to environmental signals.
Biology of Cancer Weeks 1 Introduction and 2 RTKs Dr. Michael Chorney Susquehanna Medicine and Health Science Magnet February 17 th -28 th, 2014.
Cancer. Cancer is a disease of the cell cycle Caused by one or more of the following: Increase in growth signals Loss of inhibitory signals In addition,
The Biology of Cancer Second Edition CHAPTER 4 Cellular Oncogenes
Tumor-suppressor genes Tumor-suppressor genes, function like brakes, keep cell numbers down, either by inhibiting progress through.
Cancer 박 준 오 Chapter 25. Cancer is due to failures of the mechanisms that usually control the growth and proliferation of cells. Cancer 1) Normal development.
EUKARYOTIC CELL SIGNALING VII Abnormal Signaling in Cancer Signaling to p53 Dr. Ke Shuai Office: 9-240M Factor Tel: X69168
The Problem of Cancer. What are cancer cells ? Cancerous growth involves unrestrained proliferation (malignancy) and spread (metastasis). Caused by: mutations.
Colon cancer: the second leading cause of cancer deaths in the U.S. Polyps, the first stage In tumor development
THE GENETIC BASIS OF CANCER
GENETICS A Conceptual Approach
GENETICS A Conceptual Approach
Dr. Maha Arafah Dr. Abdulmalik Alsheikh, MD, FRCPC
GENETIC BASIS OF CANCER
The Genetic Basis of Cancer
Alterations in the Cell Cycle and Gene Mutations that Cause Cancer
Chap. 16 Problem 1 Cytokine receptors and RTKs both form functional dimers on binding of ligand. Ligand binding activates cytosolic kinase domains which.
Genetics of Cancer.
Genetics Of Cancer Regulation of cell proliferation and cancer
M.B.Ch.B, MSC, DCH (UK), MRCPCH
Extracellular Regulation of Apoptosis
M.B.Ch.B, MSC, PhD, DCH (UK), MRCPCH
Carcinogenesis Dr. Mamlook Elmagraby.
Presentation transcript:

Chap. 24 Problem 1 The difference between a benign tumor and a malignant one mostly involves the latter's ability to invade and metastasize to other tissues. Benign tumors create pathologies only if they overexpress a hormone, etc. that disrupts normal metabolism, or physically interfere with tissue function due to their size. Malignant tumors commonly posses most if not all of the properties shown in Fig From a mutational standpoint, malignant colon carcinomas contain loss-of-function mutations in the APC gene as well as cancer promoting mutations in genes such as K-ras and p53. In contrast benign colon polyps possess only loss- of-function mutations in APC (Fig. 24.8).

Chap. 24 Problem 3 Malignant tumor cells secrete basic fibroblast growth factor (ßFGF), transforming growth factor  (TGF , & vascular endothelial growth factor (VEGF) to recruit blood vessels for delivery of oxygen and nutrients to tumors. Tumors with their own vasculature can grow to a large size (Fig. 24.2a).

Chap. 24 Problem 6 The "multi-hit" model for cancer induction theorizes that metastatic tumor cells evolve from an original transformed cell via the accumulation of multiple mutations that increase its survivability and invasion potential. The multiple mutation theory is supported by the fact that the incidence of contracting most cancers increases steadily with age (Fig. 24.6). The multi-hit hypothesis also is supported by studies of the transformation of benign colon polyps into malignant colon carcinomas and by other research.

Chap. 24 Problem 7 Genes that control cell growth and proliferation are commonly mutated in cancers (Fig ). Gain-of-function mutations that increase the activity of growth-promoting signaling molecules (I), receptors (II), intracellular signal transduction pathways (III), or TFs (IV) are associated with cancers. These genes are referred to as proto-oncogenes. Commonly, only a single copy of the the gene needs to be altered. Loss-of-function mutations in tumor-suppressor genes such as cell cycle control proteins (V), DNA repair proteins (VI), or anti-proliferative factor receptors such as the TGFß receptor can cause cancer. Usually both copies of these genes need to be mutated. Lastly, gain-of-function mutations in anti- apoptotic genes and loss-of-function mutations in pro-apoptotic genes (VII) are associated with cancer. Based on the above considerations, ras, Bcl-2, MDM2, and jun are proto- oncogenes. p53 and p16 are tumor-suppressor genes.

Chap. 24 Problem 10 About 10% of human cancers have a hereditary basis. In most cases, the patient inherits one non-functional copy of a tumor- suppressor gene. Cancer is induced after the second functional copy of the gene is inactivated by mutation (loss of heterozygosity). Mutations in additional genes typically also are required. The induction of hereditary vs sporadic (spontaneous) retinoblastoma, which involves the RB gene, is compared in Fig The hereditary form of this cancer usually appears in childhood in both eyes. The sporadic form (which requires two somatic mutations) occurs later in life, and in only one eye. Hereditary retinoblastoma exhibits an autosomal dominant pattern of inheritance due to the fact that individuals with one mutant copy of RB have an increased probability of developing the disease.

Chap. 24 Problem 11 The concept of loss of heterozygosity (LOH) is explained in the preceding slide. In general, cells containing a predisposing loss-of-function mutation in one copy of a tumor suppressor gene are normal until a mutation inactivates the wild-type copy of the gene. Cancer cells commonly exhibit LOH in one or more tumor suppressor genes. As illustrated in Fig a, non- disjunction (mis-segregation) events can result in LOH. Mutations that affect genes required for quality control at the spindle assembly checkpoint commonly are observed in cancers. This leads to nondisjunction events and LOH of tumor suppressor genes. Cancer cells commonly are aneuploid (contain aberrant numbers of chromosomes).

Chap. 24 Problem 12 After binding to hormones, growth factor RTKs such as the EGF receptor autophosphorylate themselves on cytosolic tyrosine residues. Phosphotyrosines then recruit proteins of signal transduction pathways to the receptor, activating signaling. Cytokine receptors are phosphorylated on cytoplasmic tyrosines by JAK kinases, leading to activation of signaling. (a) The viral protein gp55 binds to the erthropoietin receptor, activating JAK kinases in the absence of erythropoietin (Fig ). This leads to erythroleukemia. (b) In the Her2 receptor, the substitution of glutamine for valine in the transmembrane region of the receptor causes dimerization and activation of this growth factor receptor (Fig ). The resulting protein is known as the Neu oncoprotein, and is associated with some breast cancers.

Chap. 24 Problem 13 Ras signals via the MAP kinase pathway that is coupled to growth factor receptors. NF-1 (neurofibromatosis) is a GAP protein that catalyses GTP hydrolysis on Ras. Gain-of-function mutations in Ras increase signaling, whereas loss-of-function mutations in NF-1 activate signaling. Because only one copy of a gain-of-function mutation is needed to activate a process, mutations in Ras are more common than mutations in NF-1 in cancers. The first non-viral oncoprotein discovered was Ras D. In Ras D, amino acid substitutions at glycine- 12 inhibit the GTPase activity of Ras keeping it locked in an active form. Constitutively activated Ras D proteins occur in many bladder, colon, mammary, skin, and lung cancers, and in leukemias.

Chap. 24 Problem 14 The first oncoprotein discovered was the v-Src viral tyrosine kinase derived from c-Src (Fig ). c-Src is a member of a family of cytosolic tyrosine kinases implicated in cancers. In v-Src, the C-terminal 18 amino acids are deleted, including tyrosine Phosphorylation on this tyrosine inactivates the wild-type c-Src protein. Because this regulatory site is missing from v-Src, the protein is constitutively active.

Chap. 24 Problem 15 Often growth-promoting TFs or signal transduction proteins are switched on by translocation of their genes to regions of the genome where they are highly expressed. In Burkitt's lymphoma, a translocation between the long arms of chromosomes 8 and 14 places the c-myc gene under the control of the enhancer for the antibody heavy chain gene (C H ) (Fig ). This mutation is only associated with lymphomas because the antibody heavy chain gene is only expressed in B-lymphocytes. DNA containing a proto-oncogene can be amplified, leading to over-expression of the transforming gene product. The latter is illustrated in Fig a for the N-myc oncogene. Staining shows that N-myc DNA in one copy of chromosome 4 is greatly amplified in human neuroblastoma cells. This type of mutation is not limited to lymphomas.

Chap. 24 Problem 16 TGFß is an anti-proliferative factor that signals via the Smad4 signal transduction pathway in cells such as pancreatic cells (Fig ). Loss-of-function mutations in Smad4 result in decreased expression of genes that limit cell proliferation. For example, the p15 gene is a tumor- suppressor gene that encodes an inhibitor of G 1 cyclin-CDKs. p15 thus is important for slowing cell proliferation. The PAI-1 gene encodes an inhibitor of plasminogen activator. Plasmin degrades the extracellular matrix. The loss of the expression of these genes and other TGFß-controlled genes contributes to cell transformation.