Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université.

Slides:



Advertisements
Similar presentations
Nanophotonics Class 2 Surface plasmon polaritons.
Advertisements

Optical sources Lecture 5.
PHYS 1442 – Section 004 Lecture #21 Wednesday April 9, 2014 Dr. Andrew Brandt Ch 24 Wave Nature of Light Diffraction by a Single Slit or Disk Diffraction.
Squeezing Light Through Small Holes
Spectral Resolution and Spectrometers
Resonant gratings for narrow band pass filtering applications
Spectral Resolution and Spectrometers A Brief Guide to Understanding and Obtaining the Proper Resolution of the 785 Raman System.
Diffraction See Chapter 10 of Hecht.
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Apertureless Scanning Near-field Optical Microscopy: a comparison between homodyne and heterodyne approaches Journal Club Presentation – March 26 th, 2007.
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Tutorial on optical fibres F. Reynaud IRCOM Limoges Équipe optique F. Reynaud IRCOM Limoges Équipe optique Cargèse sept 2002.
Surface-waves generated by nanoslits Philippe Lalanne Jean Paul Hugonin Jean Claude Rodier INSTITUT d'OPTIQUE, Palaiseau - France Acknowledgements : Lionel.
Physics 1402: Lecture 35 Today’s Agenda Announcements: –Midterm 2: graded soon … »solutions –Homework 09: Wednesday December 9 Optics –Diffraction »Introduction.
Using Atomic Diffraction to Measure the van der Waals Coefficient for Na and Silicon Nitride J. D. Perreault 1,2, A. D. Cronin 2, H. Uys 2 1 Optical Sciences.
1 R. Bachelot H. Ibn-El-Ahrach 1, O. Soppera 2, A. Vial 1,A.-S. Grimault 1, G. Lérondel 1, J. Plain 1 and P. Royer 1 R. Bachelot, H. Ibn-El-Ahrach 1, O.
Using Atomic Diffraction to Measure the van der Waals Coefficient for Na and Silicon Nitride J. D. Perreault 1,2, A. D. Cronin 2, H. Uys 2 1 Optical Sciences.
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
SURFACE PLASMON POLARITONS. SPPs Pioneering work of Ritchie (1957) Propagate along the surface of a conductor Trapped on the surface because of their.
P. Moghe, 125:583 1 Microscopy Techniques for Biomaterials and Cell Based Interfaces Professor Prabhas V. Moghe October 26, :583 Fall 2006.
Theoretical investigations on Optical Metamaterials Jianji Yang Supervisor : Christophe Sauvan Nanophotonics and Electromagnetism Group Laboratoire Charles.
Physics 52 - Heat and Optics Dr. Joseph F. Becker Physics Department San Jose State University © 2005 J. F. Becker.
Plasmon Assisted Nanotrapping E. P. Furlani, A. Baev and P. N. Prasad The Institute for Lasers, Photonics and Biophotonics University at Buffalo, SUNY.
1 Surface Enhanced Fluorescence Ellane J. Park Turro Group Meeting July 15, 2008.
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
SCPY152 General Physics II June 19, 2015 Udom Robkob, Physics-MUSC
May 25, 2007Bilkent University, Physics Department1 Optical Design of Waveguides for Operation in the Visible and Infrared Mustafa Yorulmaz Bilkent University,
Chapter 12. Interaction of Light and Sound
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining F. Courvoisier, A. Mathis, L. Froehly, M. Jacquot, R. Giust,
The wave nature of light Interference Diffraction Polarization
Surface Plasmons devices and leakage radiation microscopy
Daily Challenge, 1/7 If light is made of waves and experiences interference, how will the constructive and destructive interference appear to us?
Chapter 24 Wave Optics. General Physics Review – waves T=1/f period, frequency T=1/f period, frequency v = f velocity, wavelength v = f velocity, wavelength.
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
Effect of Thin Coatings on Surface Plasmon-Enhanced Infrared Spectroscopy using Ni Mesh Microarrays Kenneth R. Rodriguez, Shannon Teeters- Kennedy, Hong.
J.R.Krenn – Nanotechnology – CERN 2003 – Part 3 page 1 NANOTECHNOLOGY Part 3. Optics Micro-optics Near-Field Optics Scanning Near-Field Optical Microscopy.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Physics 1C Lecture 27B.
Connection Symposium Toronto, ON May 8, 2009 Meta-Screen for High Resolution Optical Microscopy Yan Wang*, Amr S. Helmy, & George V. Eleftheriades University.
Multiple interference Optics, Eugene Hecht, Chpt. 9.
Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam,
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano An application of the.
Unit 12: Part 1 Physical Optics: The Wave Nature of Light.
Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon J. Phys. Chem. Lett. 1, (2010) Ashida Lab. Shinichiro.
1 PHY Lecture 5 Interaction of solar radiation and the atmosphere.
Announcements HW set 10 due this week; covers Ch (skip 24.8) and Office hours: Prof. Kumar’s Tea and Cookies 5-6 pm today My office hours.
Physics 1202: Lecture 26 Today’s Agenda Announcements: –Midterm 2: Friday Nov. 6… –Chap. 18, 19, 20, and 21 No HW for this week (midterm)No HW for this.
Interference & Diffraction Light Part 4. Interference Like other forms of wave energy, light waves also combine with each other Interference only occurs.
Interference and Diffraction
Nonlinear Optical Response of Nanocavities in Thin Metal Films Yehiam Prior Department of Chemical Physics Weizmann Institute of Science With Adi Salomon.
NIRT: Opto-Plasmonic Nanoscope NSF NIRT Grant ECS PIs: Y. Fainman, V. Lomakin, A. Groisman, and G. W. Schmid-Schoenbeim University of California,
29:006 FINAL EXAM FRIDAY MAY 11 3:00 – 5:00 PM IN LR1 VAN.
Physics 2DL Lectures Vivek Sharma Lecture # 3 Discussion of Experiments.
Chapter 24 The Wave Nature of Light
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Extraordinary Gas Loading For Surface Acoustic Wave Phononic Crystals Ben Ash Supervisors – G. R. Nash, P. Vukusic EPSRC Centre for Doctoral Training in.
Saturable absorption and optical limiting
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Narrow-band filtering with resonant gratings under oblique incidence Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac, Institut Fresnel, Marseille,
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Propagation of optical rays through a volume Bragg grating in transmitting (dotted.
Anomalous magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals magnetized Co/Pt films on two-dimensional.
All-Dielectric Metamaterials: A Platform for Strong Light-Matter Interactions Jianfa Zhang* (College of Optoelectronic Science and Engineering, National.
Plasmonic waveguide filters with nanodisk resonators

Why Do CPO Lead to Slow Light When the Laser
Chapter 35 The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity.
Transverse coherence and polarization measurement of 131 nm coherent femtosecond pulses from a seeded FEL J. Schwenke, E. Mansten, F. Lindau, N. Cutic,
Presentation transcript:

Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université Paul Sabatier—CNRS Toulouse, France FRISNO-8 Ein-Bokek, Israel February 20-25, 2005

The basic idea incoming laser light output optical field structured surface cold atoms

Subwavelength Structures FIB Fabrication

Arrays of Holes in Metal Films Light transmission spectrum Is this evidence of surface plasmons?

Decorated Slits and Holes in Subwavelength Ag Membranes

Light transmission through a slit flanked by periodic grooves detected far-field transmission calculated profile Garcia-Vidal, et al., Appl. Phys. Lett. 83, 4500 (2003)

Measuring the transmission profile– atomic fluorescence mapping of the field intensity

Relation between atomic fluorescence and field intensity excited atoms field intensity

100 nm slit flanked by 10 grooves each side measured calculated

How does the slit/groove structure produce the observed field distributions?

Composite Diffracted Evanescent Wave Lezec and Thio Optics Express, (2004)

Composite Evanescent Wave-I Consider diffraction at a slit of width d. The field along x is given by: Kowarz, Appl. Optics. 34, 3055 (1995) - =

Composite Evanescent Wave-II The phase shift of pi/2 is a signature of the CEW. x/d

CEWs launched on the surface incoming laser light output optical field structured surface

A pi/2 phase shift between the directly transmitted wave and the CEW 100 nm 830 nm 50 nm variable jog incoming light We can “jog” the structures to compensate for the phase shift

Jogged and unjogged slit structures unjogged jogged inward by ¼ period

Distribution and number of grooves controls the output optical field far-field intensity, no phase shift far-field intensity, with phase shift We can produce a “phased array” with constructive interference in the forward direction. The result is a forward “flame”.

Flame divergence vs. grooves—expmt. and model for unjogged grooves 10 grooves 30 grooves calculation

Flame intensity vs. groove number for jogged and unjogged grooves unjogged jogged

Flame angular distributions f CCD microscope objective d

Angular distribution of light vs. groove-slit spacing (in units of period N) for 5 grooves

Intensity angular distribution—jogged grooves output side, 3 selected distances CDEW model measured

Intensity angular distribution—output side, unjogged red, jogged black CDEW model: Phase shift:  CDEW  /2 Index: n CDEW =850/830=1.024 Relative field amplitude  x=2/x

Angular lobe spacing jogged unjogged CDEW modelExperiment

Next step: mirror MOT to get cold atoms close to surface

Next step: mirror MOT with the optical funnel generated by a planar nanostructured phased array Mirror MOT atom trajectories phased array structure optical funnel plane wave excitation

Toward integrated structures: cold atom sources and transport on a chip

Interaction atomes neutres-lumière Champs proches optiques : confinement sub-longueur d’onde de la lumière. nanolithographie optique atomique cohérente : diffraction interaction dipolaire Diffraction and confinement

Coupled resonant rings: symmetric/antisymmetric modes

Funnel effect: optical potential above the rings

Proposé et réalisé : J.V. Hajnal & G.I Opat (1989). Théorie : R. Deutschmann (1993), C. Henkel (1994). Expérience : Villetaneuse (1996), Orsay (1998). * Réseau à onde évanescente stationnaire +1

Réseau à onde évanescente nanostructurée : période orientation motif Diffraction de l’onde évanescente : A. Roberts & J.E. Murphy (1996) Autre approche : potentiel nanostructuré D. van Labeke & D. Barchiesi

Periodicity controllable through angle of optical coupling-1 50 nm above surface250 nm above surface

Periodicity controllable through angle of optical coupling-2 50 nm above surface250 nm above surface

dB =5nm L x =L y =250nm  diff =20mrad e  100nm  =40°  =55° n=2.1 (TiO2) z r =250nm MOT Experimental parameters

Tales from the future—nanophotonics, addressable atom manipulation with optical arrays

E=10V/200nm E= V/m BaTiO 3 : n 0 =2.4 r 42 =1300pm/V  n=0.45 (20%)

SrRu 4 O 3 BaTiO 3 Quartz Electro-Optic Beaming Control with variable index of refraction Ag V Variable Depth Focusing

SrRu 4 O 3 BaTiO 3 Quartz Electro-Optic Beaming Control Ag V Steering Change n from 0.8 to 1.2

Future: arrays of optical traps loaded with one or more atoms 125µm R. Dumke, et al. PRL 89, (2002)

Summary—evolution of conception Yesterday:Today: 10 µm Tomorrow:

The Group Guillaume Gay Renaud Mathevet Bruno Viaris Olivier Alloschery Colm O’Dwyer Gaetan Leveque