1 Atomic Absorption Spectroscopy. 2 Atomic Transitions: Excitation and Emission.

Slides:



Advertisements
Similar presentations
Atomic Absorption.
Advertisements

Atomic Absorption & Emission Spectroscopy
ATOMIC SPECTROMETRY 1. Flames 2. Electrothermal Atomizers 3. Plasmas.
1.1 Atomic Absorption Spectrometry (AAS) determination of elements not compounds needs radiation source high temperature for atomization Atomization a.
FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic.
1 Atomic Absorption Spectroscopy Atomic Emission Spectroscopy Lecture 18.
Chapter 10 ATOMIC EMISSION SPECTROMETRY
AAS and FES (Ch 10, 7th e, WMDS)
Atomic Absorption and Atomic Fluorescence Spectrometry Wang-yingte Department of Chemistry
1 A TOMIC SPECTROMETRIC METHODS PART 9. 2 Interferences : Four classes of interferences: 1-Spectral interferences 2-Chemical interferences 3- Refractory.
Metal Analysis by Flame and Plasma Atomic Spectroscopy Flame A. Atomization 1. Types of Atomization Processes a.) Nebulizers b. Electrothermal atomization.
AAS and FES (Ch 9, 7th e, WMDS)
Atomic Emission Spectroscopy. Chem Introduction Atomic absorption is the absorption of light by free atoms. An atomic absorption spectrophotometer.
AA and Atomic Fluorescence Spectroscopy Chapter 9
Atomic Spectroscopy Atomic Spectroscopic Methods Covered in Ch 313: Optical Atomic Spectrometry (Ch 8-10) Atomic X-ray Spectrometry (Ch 12) Atomic Mass.
Atomic Absorption Spectroscopy Yash Purohit Block 4.
INTRODUCTION TO OPTICAL METHODS
Atomic Absorption Spectroscopy AAS Comparatively easy to use Low maintenance Low consumables Good for measuring one element at a time. Comparatively easy.
Analytical Chemistry –Atomic absorption Spectroscopy
Flame photometry.
Chem. 133 – 4/7 Lecture. Announcements I Lab –Should be starting Set 2 Period 1 –Set 2 Period 2 Lab Reports due Today Pass Out TH Cheng Award Letters.
Molecular Fluorescence Spectroscopy
Atomic Emission Spectroscopy
427 PHC.  Atomic emission spectroscopy (AES) is based upon emission of electromagnetic radiation by atoms.
Instrumental Chemistry Chapter 11 Atomic Mass Spectrometry.
Lecture 2 M.Sc.. AA Spectrometer Components Lamp and FlameDetector Fuel Oxidant Nebulizer Double-Click picture for VIDEO.
Atomic Emission - AES M* → M + hn Thermal excitation M → M*
Atomic spectra are a result of energy level diagrams - quantum theory.
ATOMIC EMISSION SPECTROMETRY Chap 10 Sections: Sections: 10A 10A 10A-1 10A-1 10A-3 (skim) 10A-3 (skim) 10A-4 10A-4.
AES: Figures of Merit Linearity over 4 to 5Linearity over 4 to 5 concentration decades concentration decades Reasons for deviations Reasons for deviations.
Atomic Absorption Spectroscopy (AAS)
ATOMIC ABSORPTION AND ATOMIC FLUORESCENCE SPECTROMETRY Chap 9.
ATOMIC ABSORPTION AND ATOMIC FLUORESCENCE SPECTROMETRY Chap 9 Source Modulation Interferences in Atomic Absorption Interferences in Atomic Absorption Spectral.
Atomic Absorption Spectroscopy
BC ILN Atomic Absorption Spectroscopy (AAS) 1 Thompson Rivers University.
Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh
Biochemical instrumental analysis-2
Atomic Emission Spectroscopy
Atomic Emission Spectrometry
Flame Photometry Flame atomic emission spectrometry
Atomic Absorption Spectroscopy
Atomic Absorption Spectrophotometer
Atomic Absorption Spectroscopy
AAS Atomic Absorption Spectrophotometry. AAS – Widely in clinical laboratories to measure elements such as aluminum, calcium, copper, lead, lithium, magnesium,
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTER 20
Atomic spectroscopy Elemental composition Atoms have a number of excited energy levels accessible by visible-UV optical methods ä Must have atoms (break.
1 Introduction to Atomic Spectroscopy Atomic Absorption Spectroscopy Lecture 12.
Adv. Inst. Techs.  flame emission (eg flame photometer) known as low temperature emission ( K) ◦ first form of spectroscopy ◦ used in commercial.
Atomic Fluorescence Spectroscopy. Background l First significant research by Wineforder and Vickers in 1964 as an analytical technique l Used for element.
Atomic-absorption spectroscopy
Plasma A Plasma consists of a collection of free-moving electrons and ions and is very hot. Energy must be continually applied to sustain the plasma.
Atomic-absorption spectroscopy Lab3 Atomic-absorption spectroscopy.
A TOMIC - ABSORPTION SPECTROSCOPY Lab no. 3 Done by : Iman Al Ajeyan.
Chem. 133 – 4/4 Lecture. Announcements I Strike – If the strike occurs, it will affect classes April 14 th and 18 th (unless ended early) – Lab: would.
Chem. 133 – 4/12 Lecture. Announcements I Strike – No Strike now planned Exam 2: – Average was 77 (range 61 to 93) Last HW Set (Set 3 – see handout) Lab.
1 Chapter 8 Atomic Absorption Spectroscopy ( AAS ) Yang Yi College of Science, BUCT.
Chapter 28 Atomic Spectroscopy.
Chem. 133 – 4/4 Lecture.
ATOMIC ABSORPTION AND ATOMIC FLUORESCENCE SPECTROMETRY
Flame Emission Spectrometry
Chem. 133 – 3/30 Lecture.
Atomic Absorption and Atomic Fluorescence Spectrometry
The ratio of excited state to ground state atoms as a function of temperature is determined by the Maxwell-Boltzmann expression. Fig Excited state.
عضو هیات علمی گروه بهداشت حرفه ای دانشگاه علوم پزشکی کاشان
Elemental composition
Instrumental Chemistry
Atomic Absorption Spectroscopy
Atomic Absorption Spectroscopy. Atomic absorption spectroscopy is based on the same principle as the flame test used in qualitative analysis.
FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic.
Inductively Coupled Plasma
Presentation transcript:

1 Atomic Absorption Spectroscopy

2 Atomic Transitions: Excitation and Emission

3 Types of Atomic Flame Spectroscopy

4 Process for Metal Ion in Flame AA

5 Double Beam AA Spectrometer

6 Sample Intro Into Flame

7 Burner Chamber and Nebulizer

8 Monochromator

9 Detection Limit

10 Types of Machines Flame: absorption and emission Graphite Furnace: absorption and emission Plasma: emission –ICP: inductively coupled plasma –ICP-MS: inductively coupled plasma mass spectrometry

11 The Flame Depending on the element, different temperatures are required. So different fuel and oxidants are employed. For typical elements, acetylene is the fuel and air is the oxidant. But nitrous oxide, oxygen may be used as the ox. Hydrogen and cyanogen may be the fuel.

12 The Flame

13 Graphite Furnace Graphite furnace AA machines are more expensive and more tempermental, but they have advantages. The amount of sample required is very small, and autosamplers are used to ensure a very small, yet consistent amount is injected into the furnace. Sample size is  L The sensitivity is greater than flame.

14 Graphite Furnace In a graphite furnace, the sample is injected into a platform, where it can reside for several seconds before being atomized. This long residence time results in the higher sensitivity and low sample requirement. Again, it is wise to use an autosampler to take full advantage of the capabilities and sensitivities.

15

16 Graphite Furnace In the chamber, a sample is first dried at a low temperature to remove the solvent. If necessary to remove organic matter, it will then undergo pyrolysis (charring) at a higher temperature (1000 C) Finally, the sample will be atomized. Absorption and emission are both used in graphite furnaces.

17 ICP In ICP, much higher temperatures are employed to create a plasma. Of course, these are very expensive machines! They utilize emission.

18 ICP: Creating the Plasma Argon gas is ionized by a spark from a Tesla coil. The ionized argon gas is heated to 6,000-10,000 C by the collision of free electrons with the argon atoms.

19

20

21 ICP: The Sample Meanwhile, the sample is injected into the system which aerosolizes it. The aerosol is then dried by being carried through a heated tube by argon gas (not the plasma). The analyte then reaches the plasma. The analyte is then atomized, excited, and its emission is measured.

22

23 ICP-MS In ICP-MS, a mass spec is coupled to the ICP so that extremely low detection limits are obtained.

24 Types of Atomic Flame Spectroscopy

25 Temperature Effects You know that as the temperature increases, the energy of atoms increases. So as the temp goes up, the number of atoms in an excited state also increases. This is very important for emission techniques. The rule of thumb is that for every 10K increase in temp, there will be a 4% increase in excited state atoms, and hence a 4% increase in emission intensity.

26 Temperature Effects Why is this? If the baseline temp is increased, a higher population of atoms will be in the excited state. For emission, the energy released when these excited state atoms relax is measured. So the more atoms in the excited state, the more energy is released and measured.

27 Temperature Effects Temperature has a much lower effect on absorption measurements. For absorption, there are still mostly ground state atoms even at higher temperatures. Since absorption measures the ground state atoms becoming excited state, there is very little difference as the temp is raised slightly.

28 Interferences There are several types of interferences that affect a measurement of abs or emission. –Chemical –Spectral –Ionization –Matrix

29 Chemical Interferences Chemical interferences occur when another substance is present in the sample that suppresses the atomization of the analyte. Anions like sulfate and phosphate can bind to metal ions like calcium to lower the amount of calcium atoms that actually atomize. So the calcium reading would be low (sound familiar?).

30 Chemical Interferences To prevent this, another metal such as La 3+ is added to preferentially remove the anion. EDTA and other agents may also be employed. These are called “releasing agents” as the remove the interfence, releasing the analyte so that it may be fully atomized. Having a higher temp and higher fuel ratio may also help.

31 Spectral Interferences This occurs when another substance has a signal that overlaps with the analyte signal. This would result in high measurements. If you know this, or deduce this from control samples, the best thing is to choose another wavelength to monitor.

32 Ionization Interferences This occurs usually with alkali metals, as they have low ionization energies. As the atoms become excited, they don’t just get excited, a fraction will also ionize! Of course, this would lead to low measurements as the ionized atoms do not give off the same signal. Na is typically 5% ionized, while K is up to 33% ionized!

33 Ionization Interferences If you want correct measurements of alkali metals, then an “ionization suppressor” is a must. Strangely enough, an even “easier” to ionize additive like CsCl is added! The ionization of the Cs atoms yields an electron rich environment in the flame. This then suppresses the ionization of Na or K as they will pick up an electron as easily as they will lose it (Le Chatelier’s Principle).

34 Matrix Interferences If the matrix for the sample is very different than the solvent system for the calibration standards, then matrix effects may result. This may be due to chemical, spectral, or ionization interferences present in the complicated sample matrix. The method of standard additions is commonly employed to compensate for simple matrix effects.