Workshop 1 Alternative models for clustered survival data.

Slides:



Advertisements
Similar presentations
Qualitative predictor variables
Advertisements

Four levels of measurement Nominal Ordinal Interval Ratio 4 Nominal: the lowest level 4 Ordinal 4 Interval 4 Ratio: the highest level.
Lecture 20 Comparing groups Cox PHM. Comparing two or more samples  Anova type approach where τ is the largest time for which all groups have at least.
HSRP 734: Advanced Statistical Methods July 24, 2008.
Lecture 4 (Chapter 4). Linear Models for Correlated Data We aim to develop a general linear model framework for longitudinal data, in which the inference.
Confidence Intervals Underlying model: Unknown parameter We know how to calculate point estimates E.g. regression analysis But different data would change.
Comparison of Repeated Measures and Covariance Analysis for Pretest-Posttest Data -By Chunmei Zhou.
1 Statistics 262: Intermediate Biostatistics Kaplan-Meier methods and Parametric Regression methods.
Univariate Survival Analysis Prof. L. Duchateau Ghent University.
Part 21: Hazard Models [1/29] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Workshop frailty models Luc Duchateau, Rosemary Nguti and Paul Janssen.
Chapter 11 Survival Analysis Part 3. 2 Considering Interactions Adapted from "Anderson" leukemia data as presented in Survival Analysis: A Self-Learning.
PH6415 Review Questions. 2 Question 1 A journal article reports a 95%CI for the relative risk (RR) of an event (treatment versus control as (0.55, 0.97).
Sociology 601 Class 28: December 8, 2009 Homework 10 Review –polynomials –interaction effects Logistic regressions –log odds as outcome –compared to linear.
1 BAMS 580B Lecture 2 Part 1 – LTC Planning. 2 Topics  LTC Capacity Planning  Objectives  Approaches LBH Deterministic Model – Parameter Estimation.
Chapter Eighteen MEASURES OF ASSOCIATION
Data mining and statistical learning, lecture 5 Outline  Summary of regressions on correlated inputs  Ridge regression  PCR (principal components regression)
Chapter 11 Survival Analysis Part 2. 2 Survival Analysis and Regression Combine lots of information Combine lots of information Look at several variables.
OLS versus MLE Example YX Here is the data:
Multivariate Survival Analysis Alternative approaches Prof. L. Duchateau Ghent University.
Workshop Semiparametric frailty models
Measures of Association Deepak Khazanchi Chapter 18.
Modeling clustered survival data The different approaches.
Accelerated Failure Time (AFT) Model As An Alternative to Cox Model
Generalized Linear Models
1 B. The log-rate model Statistical analysis of occurrence-exposure rates.
Logistic regression for binary response variables.
Survival Analysis A Brief Introduction Survival Function, Hazard Function In many medical studies, the primary endpoint is time until an event.
Analysis of Complex Survey Data
1 Kaplan-Meier methods and Parametric Regression methods Kristin Sainani Ph.D. Stanford University Department of Health.
17. Duration Modeling. Modeling Duration Time until retirement Time until business failure Time until exercise of a warranty Length of an unemployment.
Lecture 20 Comparing groups Cox PHM. Comparing two or more samples  Anova type approach where τ is the largest time for which all groups have at least.
Multivariate survival analysis Luc Duchateau, Ghent University Paul Janssen, Hasselt University 1.
Multivariate Survival Analysis Prof. L. Duchateau Ghent University.
Scientific question: Does the lunch intervention impact cognitive ability? The data consists of 4 measures of cognitive ability including:Raven’s score.
Design and Analysis of Clinical Study 11. Analysis of Cohort Study Dr. Tuan V. Nguyen Garvan Institute of Medical Research Sydney, Australia.
2 December 2004PubH8420: Parametric Regression Models Slide 1 Applications - SAS Parametric Regression in SAS –PROC LIFEREG –PROC GENMOD –PROC LOGISTIC.
Lecture 13: Cox PHM Part II Basic Cox Model Parameter Estimation Hypothesis Testing.
Different Distributions David Purdie. Topics Application of GEE to: Binary outcomes: – logistic regression Events over time (rate): –Poisson regression.
Linear correlation and linear regression + summary of tests
HSRP 734: Advanced Statistical Methods July 17, 2008.
April 4 Logistic Regression –Lee Chapter 9 –Cody and Smith 9:F.
Lecture 19: Competing Risk Regression
Applied Epidemiologic Analysis - P8400 Fall 2002 Lab 9 Survival Analysis Henian Chen, M.D., Ph.D.
Lecture 3 Linear random intercept models. Example: Weight of Guinea Pigs Body weights of 48 pigs in 9 successive weeks of follow-up (Table 3.1 DLZ) The.
Pro gradu –thesis Tuija Hevonkorpi.  Basic of survival analysis  Weibull model  Frailty models  Accelerated failure time model  Case study.
Workshop 2 Frailty models. Contents Inference for shared gamma frailty models –Theoretical considerations –Fitting parametric and semiparametric models.
Tutorial 4 MBP 1010 Kevin Brown. Correlation Review Pearson’s correlation coefficient – Varies between – 1 (perfect negative linear correlation) and 1.
Lecture 12: Cox Proportional Hazards Model
Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods.
Lecture 6: Multiple Linear Regression Adjusted Variable Plots BMTRY 701 Biostatistical Methods II.
Linear Models Alan Lee Sample presentation for STATS 760.
We’ll now look at the relationship between a survival variable Y and an explanatory variable X; e.g., Y could be remission time in a leukemia study and.
Lecture 3: Parametric Survival Modeling
Treat everyone with sincerity,
Introduction to Frailty Models
5.5.3 Means and Variances for Linear Combinations
Love does not come by demanding from others, but it is a self initiation. Survival Analysis.
1 Borgan and Henderson: Event History Methodology Lancaster, September 2006 Session 6.1: Recurrent event data Intensity processes and rate functions Robust.
SOCW 671 #11 Correlation and Regression. Uses of Correlation To study the strength of a relationship To study the direction of a relationship Scattergrams.
Tutorial 5 Thursday February 14 MBP 1010 Kevin Brown.
[Topic 11-Duration Models] 1/ Duration Modeling.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. Part Four ANALYSIS AND PRESENTATION OF DATA.
Econometric Analysis of Panel Data
ביצוע רגרסיה לוגיסטית. פרק ה-2
The parametric frailty model workshop
Parametric Survival Models (ch. 7)
Love does not come by demanding from others, but it is a self initiation. Survival Analysis.
Treat everyone with sincerity,
Modeling Ordinal Associations Bin Hu
Presentation transcript:

Workshop 1 Alternative models for clustered survival data

Log-linear model representation in parametric survival models In most packages (SAS, R) survival models (and their estimates) are parametrized as log linear models If the error term e ij has extreme value distribution, then this model corresponds to –PH Weibull model with –AFT Weibull model with

The first data set bivariate survival data Time to reconstitution of blood-milk barrier after mastitis –Two quarters are infected with E. coli –One quarter treated locally, other quarter not –Blood milk-barrier destroyed –Milk Na + increases –Time to normal Na + level

Time to reconstitution data Cow number123…99100 Heifer110…10 Treatment *4.78… Placebo *2.62… *

Reading in the data library(survival) bloodmilk<-read.table("c://bivariate.dat",header=T) cows<-bloodmilk$cows y<-bloodmilk$y uncens<-bloodmilk$uncens trt<-bloodmilk$trt heifer<-bloodmilk$heifer table(trt,uncens) uncens trt

Types of models fitted Treatment effect –Parametric models with constant hazard Unadjusted model Marginal model Fixed effects model –Parametric models based on Weibull distribution Unadjusted model and coefficient interpretation –Models with unspecified baseline hazard Stratified model Semiparametric marginal model Heifer effect Fixed effects model with constant hazard Stratified model

Exponential unadjusted model res.unadjust<-survreg(Surv(y,uncens)~trt,dist="exponential",data=bloodmilk) summary(res.unadjust) b.unadjust<- -res.unadjust$coef[2] v.unadjust<- sqrt(res.unadjust$var[2,2]) l.unadjust<-exp(-res.unadjust$coef[1]) Call: survreg(formula = Surv(y, uncens) ~ trt, data = bloodmilk, dist = "exponential") Value Std. Error z p (Intercept) e-38 trt e-01 > l.unadjust (Intercept)

Exponential marginal model ncows<-length(levels(as.factor(cows))) bdel<-rep(NA,ncows) for (i in 1:ncows){ temp<-bloodmilk[bloodmilk$cows!=i,] bdel[i]<- survreg(Surv(y,uncens)~trt,data=temp,dist="exponential")$coeff[2]} sqrt(sum((bdel-b.unadjust)^2))

Exponential fixed effects model res.fixed<- survreg(Surv(y,uncens)~trt+as.factor(cows),dist="exponential",data=bloodmilk) summary(res.fixed) b.fix<- -res.fixed$coef[2] v.fix<- sqrt(res.fixed$var[2,2]) Call:survreg(formula = Surv(y, uncens) ~ trt + as.factor(cows), data = bloodmilk, dist = "exponential") Value Std. Error z p (Intercept) 2.10e trt -1.85e as.factor(cows) e … as.factor(cows) e

Weibull unadjusted model (1) res.unadjustw<-survreg(Surv(y,uncens)~trt,dist="weibull",data=bloodmilk) summary(res.unadjustw) b.unadjustw<- -res.unadjustw$coef[2]/res.unadjustw$scale v.unadjustw<- sqrt(res.unadjustw$var[2,2]) l.unadjustw<-exp(-res.unadjustw$coef[1]/res.unadjustw$scale) r.unadjustw<-1/res.unadjustw$scale Call:survreg(formula = Surv(y, uncens) ~ trt, data = bloodmilk, dist = "weibull") Value Std. Error z p (Intercept) e-36 trt e-01 Log(scale) e-01 Scale= 1.04 b.unadjustw trt v.unadjustw l.unadjustw (Intercept) r.unadjustw

Weibull unadjusted model (2) likelihood.unadjust.weib.exptransf<-function(p){ cumhaz<-exp(trt*p[2])*y^(exp(p[3]))*exp(p[1]) lnhaz<-uncens*(trt*p[2]+log(exp(p[1]))+log(exp(p[3]))+(exp(p[3])-1)*log(y) ) lik<- sum(cumhaz)-sum(lnhaz)} initial<-c(log(0.23),0.2,log(1)) res<-nlm(likelihood.unadjust.weib.exptransf,initial) l.unadjustw2<-exp(res$estimate[1]) b.unadjustw2<-res$estimate[2] r.unadjustw2<-exp(res$estimate[3])

Weibull unadjusted model (3) likelihood.unadjust.weib<-function(p){ cumhaz<-exp(trt*p[2])*y^(p[3])*p[1] lnhaz<-uncens*(trt*p[2]+log(p[1])+log(p[3])+(p[3]-1)*log(y)) lik<- sum(cumhaz)-sum(lnhaz)} initial<-c(exp(res$estimate[1]),res$estimate[2],exp(res$estimate[3])) res.unadjustw2<-nlm(likelihood.unadjust.weib,initial,iterlim=1,hessian=T) l.unadjustw2<-res.unadjustw2$estimate[1] b.unadjustw2<-res.unadjustw2$estimate[2] r.unadjustw2<-res.unadjustw2$estimate[3] v.unadjustw2<-sqrt(solve(res.unadjustw2$hessian)[2,2])

Stratified model res.strat<-coxph(Surv(y,uncens)~trt+strata(cows)) summary(res.strat) b.strat<-res.strat$coef[1] v.strat<-res.strat$coef[3] Call: coxph(formula = Surv(y, uncens) ~ trt + strata(cows)) n= 200 coef exp(coef) se(coef) z p exp(-coef) lower.95 upper.95 trt

Semiparametric marginal model (1) res.semimarg<-coxph(Surv(y,uncens)~trt+cluster(cows)) summary(res.semimarg) b.semimarg<-summary(res.semimarg)$coef[1] v.semimarg<-summary(res.semimarg)$coef[4] Call: coxph(formula = Surv(y, uncens) ~ trt + cluster(cows)) n= 200 coef exp(coef) se(coef) robust se z p lower.95 upper.95 trt Rsquare= (max possible= ) Likelihood ratio test= 0.98 on 1 df, p=0.322 Wald test = 1.22 on 1 df, p=0.269 Score (logrank) test = 0.98 on 1 df, p=0.322, Robust = 1.23 p=0.268

Semiparametric marginal model (2) b.unadjust<-coxph(Surv(y,uncens)~trt)$coeff[1] ncows<-length(levels(as.factor(cows))) bdel<-rep(NA,ncows) for (i in 1:ncows){ temp<-bloodmilk[bloodmilk$cows!=i,] bdel[i]<- -coxph(Surv(y,uncens)~trt,data=temp)$coeff[1] } sqrt(sum((-bdel-b.unadjust)^2)) [1]

Fixed effects model with heifer, heifer first summary(survreg(Surv(y,uncens)~heifer+as.factor(cows),dist="exponential", data=bloodmilk)) Call:survreg(formula = Surv(y, uncens) ~ heifer + as.factor(cows),data=bloodmilk, dist = "exponential") Value Std. Error z p (Intercept) 2.09e e heifer -2.01e e as.factor(cows)2 1.21e e as.factor(cows) e e

Fixed effects model with heifer, cow first summary(survreg(Surv(y,uncens)~as.factor(cows)+heifer,dist="exponential", data=bloodmilk)) Call:survreg(formula = Surv(y, uncens) ~ as.factor(cows) + as.factor(heifer),data=bloodmilk,dist="exponential") Value Std. Error z p (Intercept) 2.09e as.factor(cows) e as.factor(cows) e as.factor(heifer)1 0.00e

Stratified model with heifer > summary(coxph(Surv(y,uncens)~heifer+strata(cows),data=bloodmilk)) Call:coxph(formula = Surv(y, uncens) ~ heifer + strata(cows), data = bloodmilk) n= 200 coef exp(coef) se(coef) z p exp(-coef) lower.95 upper.95 heifer NA NA 0 NA NA NA NA NA Rsquare= 0 (max possible= ) Likelihood ratio test= 0 on 0 df, p=NaN Wald test = NA on 0 df, p=NA Score (logrank) test = 0 on 0 df, p=NaN Warning messages: 1: X matrix deemed to be singular; variable 1 in: coxph(Surv(y, uncens) ~ heifer + strata(cows), data = bloodmilk) 2: NaNs produced in: pchisq(q, df, lower.tail, log.p) 3: NaNs produced in: pchisq(q, df, lower.tail, log.p)

The data set: Time to first insemination Database of regional Dairy Herd Improvement Association (DHIA) –Milk recording service –Artificial insemination –Select sample –Subset of 2567 cows from 49 dairy farms

Fixed covariates data set insemfix.dat

Effect of initial ureum concentration Fit the following models –Parametric models with constant hazard Unadjusted model Fixed effects model Marginal model –Models with unspecified baseline hazard Stratified model Semiparametric marginal model Fixed effects model