Proteins. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range.

Slides:



Advertisements
Similar presentations
Review.
Advertisements

Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific sequence 2.A protein’s function depends.
Proteins Big Idea 4: Biological Systems Interact.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions.
Cohesion Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity.
Short polymer HO 123H H Unlinked monomer Dehydration removes a water molecule, forming a new bond HO H2OH2O H Longer polymer (a) Dehydration reaction.
Proteins Function and Structure.
Pages 42 to 46.  Chemical composition  Carbon  Hydrogen  Oxygen  Nitrogen  Sulfur (sometimes)  Monomer/Building Block  Amino Acids (20 different.
Proteins include a diversity of structures, resulting in a wide range of functions Protein functions include structural support, storage, transport, enzymes,
Proteins account for more than 50% of the dry mass of most cells
Proteins account for more than 50% of the dry mass of most cells
Proteins Function and Structure. Proteins more than 50% of dry mass of most cells functions include – structural support – storage, transport – cellular.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings I-2- 1 The Structure and Function of Nucleic Acids and Proteins Macromolecules.
You Must Know How the sequence and subcomponents of proteins determine their properties. The cellular functions of proteins. (Brief – we will come back.
Proteins and Enzymes Nestor T. Hilvano, M.D., M.P.H. (Images Copyright Discover Biology, 5 th ed., Singh-Cundy and Cain, Textbook, 2012.)
Proteins account for more than 50% of the dry mass of most cells
Proteins account for more than 50% of the dry mass of most cells
Essential Idea Proteins have a very wide range of functions in living organisms.
Proteins. PROTEINS Amino acids contain an amino group, a carboxyl group, a carbon and a unique R group.
Proteins Chapter 3 A. P. Biology Mr. Knowles Liberty Senior High School.
Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein.
A protein’s function depends on its specific conformation (shape) A functional proteins consists of one or more polypeptides that have been precisely twisted,
Proteins have many structures, resulting in a wide range of functions
PROTEINS.
NOTES: Ch 5, part 2 - Proteins & Nucleic Acids Proteins have many structures, resulting in a wide range of functions ● Proteins account for more.
Proteins.
Cohesion Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity.
NOTES: 2.3 part 2 Nucleic Acids & Proteins. So far, we’ve covered… the following MACROMOLECULES: ● CARBOHYDRATES… ● LIPIDS… Let’s review…
The Structure and Function of Macromolecules Chapter Proteins.
Proteins are instrumental in about everything that an organism does. These functions include structural support, storage, transport of other substances,
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
The Structure and Function of Macromolecules Proteins & Nucleic Acids.
Macromolecules of Life Proteins and Nucleic Acids
PROTEINS. Proteins Proteins do the nitty-gritty jobs of every living cell. Proteins are made of long strings of individual building blocks known as amino.
Objective 7: TSWBAT recognize and give examples of four levels of protein conformation and relate them to denaturation.
5.4: Proteins Introduction
Proteins.
Chapter 3 Proteins.
PROTEINS Characteristics of Proteins Contain carbon, hydrogen, oxygen, nitrogen, and sulfur Serve as structural components of animals Serve as control.
PROTEINS L3 BIOLOGY. FACTS ABOUT PROTEINS: Contain the elements Carbon, Hydrogen, Oxygen, and NITROGEN Polymer is formed using 20 different amino acids.
Macromolecules 3: Proteins. Your Assignment Your Protein Structure Assignment 1. Define proteins and their function 2. What is an amino acid (monomers.
The Structure and Function of Macromolecules Chpt. 5 The Structure and Function of Macromolecules.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: Proteins -
PROTEINS FOLDED POLYPEPTIDES © 2007 Paul Billiet ODWSODWS.
Proteins - Many Structures, Many Functions
AP Biology Mrs. Ramon. The Molecules of Life Macromolecules LARGE molecules Four classes: 1. Carbohydrates 2. Lipids (Fats) 3. Proteins 4. Nucleic Acids.
Proteins Tertiary Protein Structure of Enzyme Lactasevideo Video 2.
Chapter 5 Proteins.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Proteins account for more than 50% of the dry mass of most cells
Protein Structure.
Chpt. 5 The Structure and Function of Macromolecules
Proteins Section 3.4.
Proteins.
The Structure and Function of Large Biological Molecules
Transport proteins Transport protein Cell membrane
Concept 5.3: Lipids are a diverse group of hydrophobic molecules
Proteins account for more than 50% of the dry mass of most cells
Amino acids are linked by peptide bonds
Proteins account for more than 50% of the dry mass of most cells
Chapter 3 Proteins.
Fig. 5-UN1  carbon Amino group Carboxyl group.
The Structure and Function of Macromolecules
Proteins account for more than 50% of the dry mass of most cells
Proteins Genetic information in DNA codes specifically for the production of proteins Cells have thousands of different proteins, each with a specific.
The Chemical Building Blocks of Life
Proteins Proteins have many structures, resulting in a wide range of functions Proteins do most of the work in cells and act as enzymes 2. Proteins are.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Proteins account for more than 50% of the dry mass of most cells
Presentation transcript:

Proteins

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage, transport, cellular communications, movement, and defense against foreign substances [Animations are listed on slides that follow the figure]

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Animation: Structural Proteins Animation: Structural Proteins Animation: Storage Proteins Animation: Storage Proteins Animation: Transport Proteins Animation: Transport Proteins Animation: Receptor Proteins Animation: Receptor Proteins Animation: Contractile Proteins Animation: Contractile Proteins Animation: Defensive Proteins Animation: Defensive Proteins Animation: Enzymes Animation: Enzymes

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Animation: Hormonal Proteins Animation: Hormonal Proteins Animation: Sensory Proteins Animation: Sensory Proteins Animation: Gene Regulatory Proteins Animation: Gene Regulatory Proteins

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Enzymes are a type of protein that acts as a catalyst, speeding up chemical reactions Enzymes can perform their functions repeatedly, functioning as workhorses that carry out the processes of life

LE 5-16 Substrate (sucrose) Enzyme (sucrose) Fructose Glucose

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Polypeptides Polypeptides are polymers of amino acids A protein consists of one or more polypeptides

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Amino Acid Monomers Amino acids are organic molecules with carboxyl and amino groups Amino acids differ in their properties due to differing side chains, called R groups Cells use 20 amino acids to make thousands of proteins

LE 5-UN78 Amino group Carboxyl group  carbon

LE 5-17a Isoleucine (Ile) Methionine (Met) Phenylalanine (Phe) Tryptophan (Trp) Proline (Pro) Leucine (Leu) Valine (Val) Alanine (Ala) Nonpolar Glycine (Gly)

LE 5-17b Asparagine (Asn) Glutamine (Gln)Threonine (Thr) Polar Serine (Ser) Cysteine (Cys) Tyrosine (Tyr)

LE 5-17c Electrically charged Aspartic acid (Asp) Acidic Basic Glutamic acid (Glu) Lysine (Lys)Arginine (Arg) Histidine (His)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Amino Acid Polymers Amino acids are linked by peptide bonds A polypeptide is a polymer of amino acids Polypeptides range in length from a few monomers to more than a thousand Each polypeptide has a unique linear sequence of amino acids

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Determining the Amino Acid Sequence of a Polypeptide The amino acid sequences of polypeptides were first determined by chemical methods Most of the steps involved in sequencing a polypeptide are now automated

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Protein Conformation and Function A functional protein consists of one or more polypeptides twisted, folded, and coiled into a unique shape The sequence of amino acids determines a protein’s three-dimensional conformation A protein’s conformation determines its function Ribbon models and space-filling models can depict a protein’s conformation

LE 5-19 A ribbon model Groove A space-filling model

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Four Levels of Protein Structure The primary structure of a protein is its unique sequence of amino acids Secondary structure, found in most proteins, consists of coils and folds in the polypeptide chain Tertiary structure is determined by interactions among various side chains (R groups) Quaternary structure results when a protein consists of multiple polypeptide chains Animation: Protein Structure Introduction Animation: Protein Structure Introduction

LE 5-20 Amino acid subunits  pleated sheet + H 3 N Amino end  helix

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Primary structure, the sequence of amino acids in a protein, is like the order of letters in a long word Primary structure is determined by inherited genetic information Animation: Primary Protein Structure Animation: Primary Protein Structure

LE 5-20a Amino acid subunits Carboxyl end Amino end

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The coils and folds of secondary structure result from hydrogen bonds between repeating constituents of the polypeptide backbone Typical secondary structures are a coil called an alpha helix and a folded structure called a beta pleated sheet Animation: Secondary Protein Structure Animation: Secondary Protein Structure

LE 5-20b Amino acid subunits  pleated sheet  helix

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Tertiary structure is determined by interactions between R groups, rather than interactions between backbone constituents These interactions between R groups include hydrogen bonds, ionic bonds, hydrophobic interactions, and van der Waals interactions Strong covalent bonds called disulfide bridges may reinforce the protein’s conformation Animation: Tertiary Protein Structure Animation: Tertiary Protein Structure

LE 5-20d Hydrophobic interactions and van der Waals interactions Polypeptide backbone Disulfide bridge Ionic bond Hydrogen bond

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Quaternary structure results when two or more polypeptide chains form one macromolecule Collagen is a fibrous protein consisting of three polypeptides coiled like a rope Hemoglobin is a globular protein consisting of four polypeptides: two alpha and two beta chains Animation: Quaternary Protein Structure Animation: Quaternary Protein Structure

LE 5-20e  Chains  Chains Hemoglobin Iron Heme Collagen Polypeptide chain Polypeptide chain

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Sickle-Cell Disease: A Simple Change in Primary Structure A slight change in primary structure can affect a protein’s conformation and ability to function Sickle-cell disease, an inherited blood disorder, results from a single amino acid substitution in the protein hemoglobin

LE 5-21a Red blood cell shape Normal cells are full of individual hemoglobin molecules, each carrying oxygen. 10 µm Red blood cell shape Fibers of abnormal hemoglobin deform cell into sickle shape.

LE 5-21b Primary structure Secondary and tertiary structures Normal hemoglobin Val His Leu 4 Thr 5 Pro 6 Glu 7 Primary structure Secondary and tertiary structures Sickle-cell hemoglobin Val His Leu 4 Thr 5 Pro 6 ValGlu 7 Quaternary structure Normal hemoglobin (top view)         Function Molecules do not associate with one another; each carries oxygen. Quaternary structure Sickle-cell hemoglobin Function Molecules interact with one another to crystallize into a fiber; capacity to carry oxygen is greatly reduced. Exposed hydrophobic region  subunit

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings What Determines Protein Conformation? In addition to primary structure, physical and chemical conditions can affect conformation Alternations in pH, salt concentration, temperature, or other environmental factors can cause a protein to unravel This loss of a protein’s native conformation is called denaturation A denatured protein is biologically inactive

LE 5-22 Denaturation Renaturation Denatured proteinNormal protein

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Protein-Folding Problem It is hard to predict a protein’s conformation from its primary structure Most proteins probably go through several states on their way to a stable conformation Chaperonins are protein molecules that assist the proper folding of other proteins

LE 5-23a Chaperonin (fully assembled) Hollow cylinder Cap

LE 5-23b Polypeptide Correctly folded protein An unfolded poly- peptide enters the cylinder from one end. Steps of Chaperonin Action: The cap comes off, and the properly folded protein is released. The cap attaches, causing the cylinder to change shape in such a way that it creates a hydrophilic environment for the folding of the polypeptide.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Scientists use X-ray crystallography to determine a protein’s conformation Another method is nuclear magnetic resonance (NMR) spectroscopy, which does not require protein crystallization

LE 5-24a Photographic film Diffracted X-rays X-ray source X-ray beam X-ray diffraction pattern Crystal

LE 5-24b Nucleic acid 3D computer model X-ray diffraction pattern Protein