Genomic DNA extraction from whole blood

Slides:



Advertisements
Similar presentations
Structure of DNA. Polymerase Chain Reaction - PCR PCR amplifies DNA –Makes lots and lots of copies of a few copies of DNA –Can copy different lengths.
Advertisements

PCR way of copying specific DNA fragments from small sample DNA material "molecular photocopying" It’s fast, inexpensive and simple Polymerase Chain Reaction.
Polymerase Chain Reaction (PCR). PCR produces billions of copies of a specific piece of DNA from trace amounts of starting material. (i.e. blood, skin.
Detection of the human Mitochondrial DNA A Polymerase Chain Reaction Experiment.
Polymerase chain reaction (PCR)
General Genetics. PCR 1.Introduce the students to the preparation of the PCR reaction. PCR 2.Examine the PCR products on agarose gel electrophoresis.
Genomic DNA purification
PCR – Polymerase chain reaction
The PCR The Polymerase Chain Reaction. The PCR is used to make copies of DNA (amplification). Whole genome OR DNA fragments.
ZmqqRPISg0g&feature=player_detail page The polymerase chain reaction (PCR)
Fundamentals of Forensic DNA Typing Slides prepared by John M. Butler June 2009 Chapter 7 DNA Amplification.
EXPERIMENT: DETECTING BIOTECH CORN USING PCR BIOTECHNIQUES.
PCR is stands for ‘Polymerase Chain Reaction”. PCR is a very essential molecular biological, qualitative & quantitative analytical technique, that helps.
DNA Replication DNA mRNA protein transcription translation replication Before each cell division the DNA must be replicated so each daughter cell can get.
Polymerase chain reaction
Polymerase Chain Reaction
WORKSHOP (1) Presented by: Afsaneh Bazgir Polymerase Chain Reaction
Polymerase Chain Reaction (PCR) and its Applications.
Polymerase Chain Reaction (PCR)
Recombinant DNA Technology………..
By: Kelly and Kathryn PCR. What exactly is PCR? PCR stands for “polymerase chain reaction” and is a lab technique used to clone segments of DNA. Two main.
Genetics Techniques: RFLP & PCR AP Biology Unit 3.
Polymerase Chain Reaction PCR. invented by Karry B. Mullis (1983, Nobel Prize 1993) patent sold by Cetus corp. to La Roche for $300 million depends on.
Polymerase Chain Reaction Mrs. Stewart Medical Interventions.
Polymerase Chain Reaction (PCR)
Polymerase Chain Reaction (PCR)
What do these terms mean to you? You have 5 min to discuss possible meanings and examples with your group! DNA sequencing DNA profiling/fingerprinting.
POLYMERASE CHAIN REACTION. DNA Structure DNA consists of two molecules that are arranged into a ladder-like structure called a Double Helix. A molecule.
Polymerase Chain Reaction (PCR) What is PCR?: Use of DNA polymerase to selectively amplify a segment of DNA from a much larger sample. Xeroxing DNA, start.
Tina Doss Applied Biosystems
PCR provides a forensics tool for identifying colonies
A technique to make a lot of DNA from only a little!
Polymerase Chain Reaction (PCR) Developed in 1983 by Kary Mullis Major breakthrough in Molecular Biology Allows for the amplification of specific DNA fragments.
Success criteria - PCR By the end of this lesson we will be able to: 1. The polymerase chain reaction (PCR) is a technique for the amplification ( making.
Polymerase Chain Reaction (PCR)
INTRODUCTION. INTRODUCTION Introduction   In the past, amplifying (replication) of DNA was done in bacteria and took weeks. In 1971, paper in the.
Polymerase Chain Reaction (PCR)
PCR is used in; Cloning into plasmid vectors DNA sequencing Genetic screening DNA based phylogeny Functional analysis of genes Identification of DNA fingerprints.
The polymerase chain reaction
PPT-1. Experiment Objective: The objective of this experiment is to amplify a DNA fragment by Polymerase Chain Reaction (PCR) and to clone the amplified.
The polymerase chain reaction
Polymerase Chain Reaction A process used to artificially multiply a chosen piece of genetic material. May also be known as DNA amplification. One strand.
Amplification of a DNA fragment by Polymerase Chain Reaction (PCR) Ms. Nadia Amara.
Detection of the human VNTR using PCR* *A Polymerase Chain Reaction Experiment.
PCR With PCR it is possible to amplify a single piece of DNA, or a very small number of pieces of DNA, over many cycles, generating millions of copies.
Semiconservative DNA replication Each strand of DNA acts as a template for synthesis of a new strand Daughter DNA contains one parental and one newly synthesized.
The Polymerase Chain Reaction (PCR)
Introduction to PCR Polymerase Chain Reaction
PCR mediated mutagenesis 2013 년도 2 학기 생화학 실험 (2) 5 주차 조교 : 안성원.
CATEGORY: EXPERIMENTAL TECHNIQUES Polymerase Chain Reaction (PCR) Tarnjit Khera, University of Bristol, UK Background The polymerase chain reaction (PCR)
Kevin Chen.  A method of amplifying or copying DNA fragments.
Lecturer: Bahiya Osrah Background PCR (Polymerase Chain Reaction) is a molecular biological technique that is used to amplify specific.
Rajan sharma.  Polymerase chain reaction Is a in vitro method of enzymatic synthesis of specific DNA sequences.  This method was first time developed.
MOLECULAR TECHNIQUES IN MICROBIOLOGY (1) Standard polymerase chain reaction Kary Mullis invented the PCR in 1983 (USA)Kary Mullis and synthesized.
I. PCR- Polymerase Chain Reaction A. A method to amplify a specific piece of DNA. DNA polymerase adds complementary strand DNA heated to separate strands.
Polymerase Chain Reaction. Before PCR Before PCR Recombinant Recombinant DNA DNA technology technology.
Presented by: Khadija Balubaid.  PCR (Polymerase Chain Reaction) is a molecular biological technique  used to amplify specific fragment of DNA in vitro.
Introduction to PCR Polymerase Chain Reaction
Success criteria - PCR By the end of this lesson we will be know:
Polymerase Chain Reaction (PCR)
Polymerase Chain Reaction (PCR)
POLYMERASE CHAIN REACTION TECHNIQUES
Oligose - Primers Qiagen Dneasy Polymerase Chain Reaction What Does it all Mean? Maria Brown October 22, 1009.
Polymerase Chain Reaction (PCR) technique
Introduction to Bioinformatics II
Polymerase Chain Reaction (PCR) & DNA SEQUENCING
Polymerase Chain Reaction (PCR).
Dr. Israa ayoub alwan Lec -12-
The polymerase chain reaction
Polymerase Chain Reaction (PCR) & DNA SEQUENCING
Presentation transcript:

Genomic DNA extraction from whole blood

Principle Genomic DNA Extraction Kit: In the high salt state, DNA purification resin adsorbed DNA specificly; while in a state of low-salt or aqueous solution, DNA was eluted down.

Reagents: purification resin GN binding buffer washing buffer Purification Column ethanol

Steps: 1. Add 0.4ml whole blood to 1ml purification resin in a tube. Invert tube 5-6 times gently and leave to incubate for 3 minutes at room temperature. Invert the tube again at the half of the 3 minutes. Spin at 5000 rpm for 3 secs. Discard supernatant. 2. Re-suspend pellet in 1 ml of GN binding buffer, Invert the tube . Spin at 5000 rpm for 3 secs. Discard supernatant.

3. Re-suspend pellet in 0. 5 ml of washing buffer. Invert the tube 3. Re-suspend pellet in 0.5 ml of washing buffer. Invert the tube . Spin at 5000 rpm for 3 secs. Discard supernatant. Repeat this step again. The pellet should be white to cream in colour. If pellet is significantly yellow, repeat washing step again.

4. Add 0. 8 ml of ethanol to pellet and re-suspend pellet 4. Add 0.8 ml of ethanol to pellet and re-suspend pellet. Transfer it to a new Purification Column. Spin at 12000 rpm for 1 min. Discard ethanol in the lower collection tube. Spin again, discard ethanol completely.

5. Put the Purification Column in a new 1 5. Put the Purification Column in a new 1.5ml tube, add 100µl ddH2O to the Resin of the Purification Column, incubate for 3 minutes at room temperature, Spin at 12000 rpm for 2 min. 6. Finally, the genomic DNA is in the tube.

Polymerase chain reaction

a technique to amplify a single or few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. The method relies on thermal cycling, consisting of cycles of repeated heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA.

DNA template that contains the DNA region (target) to be amplified. A basic PCR set up requires several components and reagents.These components include: DNA template that contains the DNA region (target) to be amplified. Two primers that are complementary to the 3' (three prime) ends of each of the sense and anti-sense strand of the DNA target. Taq PCR MasterMix Taq polymerase or another DNA polymerase with a temperature optimum at around 70 °C. Deoxynucleoside triphosphates (dNTPs), the building blocks from which the DNA polymerases synthesizes a new DNA strand. Buffer solution, providing a suitable chemical environment for optimum activity and stability of the DNA polymerase. Divalent cations; generally Mg2+ is used

CYCLES Denaturation step: This step is the first regular cycling event and consists of heating the reaction to 94–98 °C for 20–30 seconds. It causes DNA melting of the DNA template by disrupting the hydrogen bonds between complementary bases, yielding single strands of DNA. Annealing step: The reaction temperature is lowered to 50–65 °C for 20–40 seconds allowing annealing of the primers to the single-stranded DNA template. The polymerase binds to the primer-template hybrid and begins DNA synthesis.

CYCLES Extension/elongation step: The temperature at this step depends on the DNA polymerase used; commonly a temperature of 72 °C is used with Taq polymerase. At this step the DNA polymerase synthesizes a new DNA strand complementary to the DNA template strand by adding dNTPs that are complementary to the template in 5' to 3' direction.

Final elongation: 70–74 °C for 5–15 minutes after the last cycle to ensure that any remaining single-stranded DNA is fully extended. Final hold: This step at 4–15 °C for an indefinite time may be employed for short-term storage of the reaction.

To get special gene from genomic DNA by PCR.

1、Taq PCR MasterMix 2、primers 3、ddH2O 4、template DNA

ddH2O 21ul 2X Taq PCR MasterMix 25ul Primer 1 1ul Primer 2 1ul Template DNA 2ul 50ul

PCR Steps: Initialization step :94℃8min lid 100℃ Initialization step :94℃8min 35 Cycles: Denaturation step 94℃30s Annealing step 55℃30s Extension step 72℃50s Final elongation : 72℃ 10min Final hold 4 ℃

NOTES Primers (short DNA fragments) containing sequences complementary to the target region along with a DNA polymerase (after which the method is named) are key components to enable selective and repeated amplification.

Almost all PCR applications employ a heat-stable DNA polymerase, such as Taq polymerase, an enzyme originally isolated from the bacterium Thermus aquaticus. This DNA polymerase enzymatically assembles a new DNA strand from DNA building blocks, the nucleotides, by using single-stranded DNA as a template and DNA oligonucleotides (also called DNA primers), which are required for initiation of DNA synthesis.

The PCR usually consists of a series of 20 to 40 repeated temperature changes called cycles; each cycle typically consists of 2-3 discrete temperature steps. Most commonly PCR is carried out with cycles that have three temperature steps (see Fig). The cycling is often preceded by a single temperature step (called hold) at a high temperature (>90°C), and followed by one hold at the end for final product extension or brief storage. Initialization step: 94–96 °C for 1–9 minutes.

NEXT WEEK