Real-Time Protocol (RTP) r Provides standard packet format for real-time application r Typically runs over UDP r Specifies header fields below r Payload.

Slides:



Advertisements
Similar presentations
Quality of Service CS 457 Presentation Xue Gu Nov 15, 2001.
Advertisements

IETF Differentiated Services Concerns with Intserv: r Scalability: signaling, maintaining per-flow router state difficult with large number of flows r.
Congestion Control Reasons: - too many packets in the network and not enough buffer space S = rate at which packets are generated R = rate at which receivers.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 – QoS.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 25 Multimedia.
1 Providing Quality of Service in the Internet Based on Slides from Ross and Kurose.
User Control of Streaming Media: RTSP
Differentiated Services. Service Differentiation in the Internet Different applications have varying bandwidth, delay, and reliability requirements How.
Quality of Service Support
CSIS TAC-TOI-01 Quality of Service & Traffic Engineering (QoS & TE) Khaled Mohamed Credit: some of the sides are from Cisco Systems.
Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July.
Multimedia Applications
ACN: IntServ and DiffServ1 Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook “ Computer.
CS Summer 2003 Lecture 8. CS Summer 2003 Populating LFIB with LDP Assigned/Learned Labels Changes in the LFIB may be triggered routing or.
CSE 401N Multimedia Networking-2 Lecture-19. Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet.
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
ACN: Congestion Control1 Congestion Control and Resource Allocation.
School of Information Technologies IP Quality of Service NETS3303/3603 Weeks
Quality of Service Support
Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks.
CSc 461/561 CSc 461/561 Multimedia Systems Part C: 3. QoS.
Spring 2002CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
24-1 Chapter 24. Congestion Control and Quality of Service part Quality of Service 23.6 Techniques to Improve QoS 23.7 Integrated Services 23.8.
Computer Networking Multimedia.
CS 218 F 2003 Nov 3 lecture:  Streaming video/audio  Adaptive encoding (eg, layered encoding)  TCP friendliness References: r J. Padhye, V.Firoiu, D.
CIS679: RTP and RTCP r Review of Last Lecture r Streaming from Web Server r RTP and RTCP.
Computer Networking Intserv, Diffserv, RSVP.
Ch 7. Multimedia Networking Myungchul Kim
Advance Computer Networks Lecture#14
Integrated Services Advanced Multimedia University of Palestine University of Palestine Eng. Wisam Zaqoot Eng. Wisam Zaqoot December 2010 December 2010.
CIS679: Scheduling, Resource Configuration and Admission Control r Review of Last lecture r Scheduling r Resource configuration r Admission control.
Integrated Services (RFC 1633) r Architecture for providing QoS guarantees to individual application sessions r Call setup: a session requiring QoS guarantees.
1 Integrated and Differentiated Services Multimedia Systems(Module 5 Lesson 4) Summary: r Intserv Architecture RSVP signaling protocol r Diffserv Architecture.
1 Chapter 6 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
CSE679: QoS Infrastructure to Support Multimedia Communications r Principles r Policing r Scheduling r RSVP r Integrated and Differentiated Services.
CS Spring 2011 CS 414 – Multimedia Systems Design Lecture 23 - Multimedia Network Protocols (Layer 3) Klara Nahrstedt Spring 2011.
CSE QoS in IP. CSE Improving QOS in IP Networks Thus far: “making the best of best effort”
Computer Networking Intserv, Diffserv, RSVP.
QOS مظفر بگ محمدی دانشگاه ایلام. 2 Why a New Service Model? Best effort clearly insufficient –Some applications need more assurances from the network.
K. Salah 1 Beyond Best Effort Technologies Our primarily objective here is to understand more on QoS mechanisms so that you can make informed decision.
1 Internet Quality of Service (QoS) By Behzad Akbari Spring 2011 These slides are based on the slides of J. Kurose (UMASS)
Class-based QoS  Internet QoS model requires per session state at each router  1000s s of flows  per session RSVP is complex => reluctance.
Beyond Best-Effort Service Advanced Multimedia University of Palestine University of Palestine Eng. Wisam Zaqoot Eng. Wisam Zaqoot November 2010 November.
CS Spring 2009 CS 414 – Multimedia Systems Design Lecture 21 – Case Studies for Multimedia Network Support (Layer 3) Klara Nahrstedt Spring 2009.
Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms TTM8100 Slides edited by Steinar Andresen.
Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-IP 7.4 protocols for real-time conversational.
Network Support for QoS – DiffServ and IntServ Hongli Luo CEIT, IPFW.
Bjorn Landfeldt, The University of Sydney 1 NETS3303 Networked Systems.
Providing QoS in IP Networks Future: next generation Internet with QoS guarantees m Differentiated Services: differential guarantees m Integrated Services:
Computer Networking Multimedia. 11/15/20052 Outline Multimedia requirements Streaming Phone over IP Recovering from Jitter and Loss RTP QoS Requirements.
Multimedia and QoS#1 Quality of Service Support. Multimedia and QoS#2 QOS in IP Networks r IETF groups are working on proposals to provide QOS control.
1 Multimedia Networking: Beyond Best-Effort Internet.
Ch 6. Multimedia Networking Myungchul Kim
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time, Interactive Multimedia: Internet.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
An End-to-End Service Architecture r Provide assured service, premium service, and best effort service (RFC 2638) Assured service: provide reliable service.
Providing QoS in IP Networks
1 Lecture 15 Internet resource allocation and QoS Resource Reservation Protocol Integrated Services Differentiated Services.
Chapter 30 Quality of Service Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Internet Quality of Service
Advanced Computer Networks
QoS & Queuing Theory CS352.
Klara Nahrstedt Spring 2009
EE 122: Lecture 18 (Differentiated Services)
EE 122: Differentiated Services
CIS679: Two Planes and Int-Serv Model
Real-Time Protocol (RTP)
Network Support for Quality of Service (QoS)
Real-Time Protocol (RTP)
Presentation transcript:

Real-Time Protocol (RTP) r Provides standard packet format for real-time application r Typically runs over UDP r Specifies header fields below r Payload Type: 7 bits, providing 128 possible different types of encoding; eg PCM, MPEG2 video, etc. r Sequence Number: 16 bits; used to detect packet loss

Real-Time Protocol (RTP) r Timestamp: 32 bytes; gives the sampling instant of the first audio/video byte in the packet; used to remove jitter introduced by the network r Synchronization Source identifier (SSRC): 32 bits; an id for the source of a stream; assigned randomly by the source

RTP Control Protocol (RTCP) r Protocol specifies report packets exchanged between sources and destinations of multimedia information r Three reports are defined: Receiver reception, Sender, and Source description r Reports contain statistics such as the number of packets sent, number of packets lost, inter-arrival jitter r Used to modify sender transmission rates and for diagnostics purposes

RTCP Bandwidth Scaling r If each receiver sends RTCP packets to all other receivers, the traffic load resulting can be large r RTCP adjusts the interval between reports based on the number of participating receivers r Typically, limit the RTCP bandwidth to 5% of the session bandwidth, divided between the sender reports (25%) and the receivers reports (75%)

Improving QOS in IP Networks r IETF groups are working on proposals to provide better QOS control in IP networks, i.e., going beyond best effort to provide some assurance for QOS r Work in Progress includes RSVP, Differentiated Services, and Integrated Services r Simple model for sharing and congestion studies:

Principles for QOS Guarantees r Consider a phone application at 1Mbps and an FTP application sharing a 1.5 Mbps link. m bursts of FTP can congest the router and cause audio packets to be dropped. m want to give priority to audio over FTP r PRINCIPLE 1: Marking of packets is needed for router to distinguish between different classes; and new router policy to treat packets accordingly

Principles for QOS Guarantees (more) r Applications misbehave (audio sends packets at a rate higher than 1Mbps assumed above); r PRINCIPLE 2: provide protection (isolation) for one class from other classes r Require Policing Mechanisms to ensure sources adhere to bandwidth requirements; Marking and Policing need to be done at the edges:

Principles for QOS Guarantees (more) r Alternative to Marking and Policing: allocate a set portion of bandwidth to each application flow; can lead to inefficient use of bandwidth if one of the flows does not use its allocation r PRINCIPLE 3: While providing isolation, it is desirable to use resources as efficiently as possible

Principles for QOS Guarantees (more) r Cannot support traffic beyond link capacity r PRINCIPLE 4: Need a Call Admission Process; application flow declares its needs, network may block call if it cannot satisfy the needs

Summary

Scheduling And Policing Mechanisms r Scheduling: choosing the next packet for transmission on a link can be done following a number of policies; r FIFO: in order of arrival to the queue; packets that arrive to a full buffer are either discarded, or a discard policy is used to determine which packet to discard among the arrival and those already queued

Scheduling Policies r Priority Queuing: classes have different priorities; class may depend on explicit marking or other header info, eg IP source or destination, TCP Port numbers, etc. r Transmit a packet from the highest priority class with a non-empty queue r Preemptive and non-preemptive versions

Scheduling Policies (more) r Round Robin: scan class queues serving one from each class that has a non-empty queue

Scheduling Policies (more) r Weighted Fair Queuing: is a generalized Round Robin in which an attempt is made to provide a class with a differentiated amount of service over a given period of time

Policing Mechanisms r Three criteria: m (Long term) Average Rate (100 packets per sec or 6000 packets per min??), crucial aspect is the interval length m Peak Rate: e.g., 6000 p p minute Avg and 1500 p p sec Peak m (Max.) Burst Size: Max. number of packets sent consecutively, ie over a short period of time

Policing Mechanisms r Token Bucket mechanism, provides a means for limiting input to specified Burst Size and Average Rate.

Policing Mechanisms (more) r Bucket can hold b tokens; token are generated at a rate of r token/sec unless bucket is full of tokens. r Over an interval of length t, the number of packets that are admitted is less than or equal to (r t + b). r Token bucket and WFQ can be combined to provide upper bound on delay.

Integrated Services r An architecture for providing QOS guarantees in IP networks for individual application sessions r relies on resource reservation, and routers need to maintain state info (Virtual Circuit??), maintaining records of allocated resources and responding to new Call setup requests on that basis

Call Admission r Session must first declare its QOS requirement and characterize the traffic it will send through the network r R-spec: defines the QOS being requested r T-spec: defines the traffic characteristics r A signaling protocol is needed to carry the R-spec and T-spec to the routers where reservation is required; RSVP is a leading candidate for such signaling protocol

Call Admission r Call Admission: routers will admit calls based on their R-spec and T-spec and base on the current resource allocated at the routers to other calls.

Integrated Services: Classes r Guaranteed QOS: this class is provided with firm bounds on queuing delay at a router; envisioned for hard real-time applications that are highly sensitive to end-to-end delay expectation and variance r Controlled Load: this class is provided a QOS closely approximating that provided by an unloaded router; envisioned for today’s IP network real- time applications which perform well in an unloaded network

Differentiated Services r Intended to address the following difficulties with Intserv and RSVP; r Scalability: maintaining states by routers in high speed networks is difficult sue to the very large number of flows r Flexible Service Models: Intserv has only two classes, want to provide more qualitative service classes; want to provide ‘relative’ service distinction (Platinum, Gold, Silver, …) r Simpler signaling: (than RSVP) many applications and users may only w ant to specify a more qualitative notion of service

Differentiated Services r Approach: m Only simple functions in the core, and relatively complex functions at edge routers (or hosts) m Do not define service classes, instead provides functional components with which service classes can be built

Edge Functions r At DS-capable host or first DS-capable router r Classification: edge node marks packets according to classification rules to be specified (manually by admin, or by some TBD protocol) r Traffic Conditioning: edge node may delay and then forward or may discard

Core Functions r Forwarding: according to “Per-Hop-Behavior” or PHB specified for the particular packet class; such PHB is strictly based on class marking (no other header fields can be used to influence PHB) r BIG ADVANTAGE: No state info to be maintained by routers!

Classification and Conditioning r Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6 r 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive r 2 bits are currently unused

Classification and Conditioning r It may be desirable to limit traffic injection rate of some class; user declares traffic profile (eg, rate and burst size); traffic is metered and shaped if non-conforming

Forwarding (PHB) r PHB result in a different observable (measurable) forwarding performance behavior r PHB does not specify what mechanisms to use to ensure required PHB performance behavior r Examples: m Class A gets x% of outgoing link bandwidth over time intervals of a specified length m Class A packets leave first before packets from class B

Forwarding (PHB) r PHBs under consideration: m Expedited Forwarding: departure rate of packets from a class equals or exceeds a specified rate (logical link with a minimum guaranteed rate) m Assured Forwarding: 4 classes, each guaranteed a minimum amount of bandwidth and buffering; each with three drop preference partitions

Differentiated Services Issues r AF and EF are not even in a standard track yet… research ongoing r “Virtual Leased lines” and “Olympic” services are being discussed r Impact of crossing multiple ASs and routers that are not DS-capable