Copyright © 2009 Pearson Education, Inc. PHY093 – Lecture 2b Motion with Constant Acceleration 2 Dimensions 1.

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Motion in Two and Three Dimensions; Vectors
Physics: Principles with Applications, 6th edition
Kinematic Equations and Projectile Motion
Section 3-5: Projectile Motion
Chap 3 :Kinematics in 2D, 3D and Projectile Motion HW4: Chap.3:Pb.14,Pb.57, Pb.87 Chap 4:Pb.3, Pb.4, Pb.12, Pb.27, Pb. 37 Due Friday 26.
Projectile Motion.
© 2014 John Wiley & Sons, Inc. All rights reserved.
Projectile Motion. What Is It? Two dimensional motion resulting from a vertical acceleration due to gravity and a uniform horizontal velocity.
1 UCT PHY1025F: Mechanics Physics 1025F Mechanics Dr. Steve Peterson KINEMATICS.
Chapter 4 Motion in Two Dimensions EXAMPLES. Example 4.1 Driving off a cliff. y i = 0 at top, y is positive upward. Also v yi = 0 How fast must the motorcycle.
Projectile Motion.
Unit 5, Kinematics in Two Dimensions I) Projectile motion.
Kinematics in 2 Dimensions
Projectile Motion Lecturer: Professor Stephen T. Thornton.
AIM: How can we describe the path of an object fired horizontally from a height above the ground? DO NOW: A ball rolls off a table top with an initial.
Do now A B + = ? The wrong diagrams Draw the right diagram for A + B.
Kinematics in Two Dimensions Chapter Displacement, Velocity, and Acceleration.
Projectiles.
Chapter 3 Kinematics in Two Dimensions; Vectors Units of Chapter 3 Vectors and Scalars Addition of Vectors – Graphical Methods Subtraction of Vectors,
PHYS 2010 Nathalie Hoffmann University of Utah
3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola.
Chapter 3 Kinematics in Two Dimensions; Vectors. Units of Chapter 3 Vectors and Scalars Addition of Vectors – Graphical Methods Subtraction of Vectors,
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
More Projectile Motion Discussion: Examples
Motion in Two or Three Dimensions
Projectile Motion. What Is It? Two dimensional motion resulting from a vertical acceleration due to gravity and a uniform horizontal velocity.
Chapter 3 Kinematics in Two Dimensions; Vectors Trigonometry Review.
Chapter 3 Kinematics in Two Dimensions; Vectors. Units of Chapter 3 Vectors and Scalars Addition of Vectors – Graphical Methods Subtraction of Vectors,
PDT 180 ENGINEERING SCIENCE Vectors And Scalars (Continue)
One Dimensional Kinematics: Problem Solving Kinematics in Two-Dimensions: Law of Addition of Velocities Projectile Motion 8.01 W02D1.
1 PPMF101 – Lecture 4 Motions in 1 & 2 Dimensions.
Chapter 3 Kinematics in Two Dimensions; Vectors. Units of Chapter 3 Projectile Motion Solving Problems Involving Projectile Motion Projectile Motion Is.
Lecture 5 Lecture 5 Projectile Motion.  Objects that are thrown or launched into the air and are subject to gravity are called projectiles.  Projectile.
Kinematics Kinematics – the study of how things move
Parabolic or Projectile Motion
Objectives: The student will be able to:
Kinematics in Two Dimensions
Projectile Motion Examples. Example 3-6: Driving off a cliff!! y is positive upward, y 0 = 0 at top. Also v y0 = 0 v x = v x0 = ? v y = -gt x = v x0 t,
Chap. 3: Kinematics in Two or Three Dimensions: Vectors.
CHAPTER 6 MOTION IN 2 DIMENSIONS.
Motion in Two Dimensions. Projectile Motion: the motion of a particle that is projected or launched and only accelerated by gravity. cp: 5.
Motion in Two Dimensions. Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola.
Motion in Two Dimensions Chapter 7.2 Projectile Motion What is the path of a projectile as it moves through the air? Parabolic? Straight up and down?
Projectile Motion Falling things, and rockets ‘n’ that… AP Physics Unit 1 Oct 10 Lesson 2.
Projectile Motion.
Do Now A tennis ball is dropped from the top of a building. It strikes the ground 6 seconds after being dropped. How high is the building? (b) What is.
Chapter Projectile Motion 6.1.
Kinematics in Two Dimensions. I. Displacement, Velocity, and Acceleration A. Displacement- distance traveled from starting point to final destination.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 3 Intro to Vectors Notes Section 1-3 Notes 6 October 2015.
AP PHYSICS Chapter 3 2-D Kinematics. 2-D MOTION The overriding principle for 2-Dimensional problems is that the motion can be resolved using vectors in.
Chapter 3 Kinematics in Two Dimensions; Vectors © 2014 Pearson Education, Inc.
PROJECTILE MOTION CHAPTER 3.5. PROJECTILE MOTION THE MOTION OF OBJECTS THROUGH THE AIR IN TWO DIMENSIONS.
Part 1 Projectiles launched horizontally
Chapter 3 Kinematics in Two Dimensions; Vectors
Kinematics in Two Dimensions
What is Projectile Motion?
Section 3-7: Projectile Motion
3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. Figure Caption:
Chapter 4:Dynamics: Newton’s Law of Motion
Projectile Motion Unit 6.
Chapter 3 Kinematics in Two Dimensions; Vectors
Projectile Motion.
Projectile Motion.
Kinematics in Two Dimensions; Vectors
Kinematics in Two Dimensions
Projectile Motion Physics 101.
Kinematics in Two Dimensions
Presentation transcript:

Copyright © 2009 Pearson Education, Inc. PHY093 – Lecture 2b Motion with Constant Acceleration 2 Dimensions 1

Copyright © 2009 Pearson Education, Inc. Chapter 3 Kinematics in Two Dimensions 2

Copyright © 2009 Pearson Education, Inc. Units of Chapter 3 Adding Vectors Projectile Motion Solving Problems Involving Projectile Motion 3

Copyright © 2009 Pearson Education, Inc. 3-4 Adding Vectors by Components Example 3-2: Mail carrier’s displacement. A rural mail carrier leaves the post office and drives 22.0 km in a northerly direction. She then drives in a direction 60.0° south of east for 47.0 km. What is her displacement from the post office? 4

Copyright © 2009 Pearson Education, Inc. 3-4 Adding Vectors by Components Example 3-3: Three short trips. An airplane trip involves three legs, with two stopovers. The first leg is due east for 620 km; the second leg is southeast (45°) for 440 km; and the third leg is at 53° south of west, for 550 km, as shown. What is the plane’s total displacement? 5

Copyright © 2009 Pearson Education, Inc. 3-6 Vector Kinematics Generalizing the one-dimensional equations for constant acceleration: 6

Copyright © 2009 Pearson Education, Inc. 3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 7

Copyright © 2009 Pearson Education, Inc. It can be understood by analyzing the horizontal and vertical motions separately. 3-7 Projectile Motion 8

Copyright © 2009 Pearson Education, Inc. 3-7 Projectile Motion The speed in the x-direction is constant; in the y- direction the object moves with constant acceleration g. This photograph shows two balls that start to fall at the same time. The one on the right has an initial speed in the x-direction. It can be seen that vertical positions of the two balls are identical at identical times, while the horizontal position of the yellow ball increases linearly. 9

Copyright © 2009 Pearson Education, Inc. 3-7 Projectile Motion If an object is launched at an initial angle of θ 0 with the horizontal, the analysis is similar except that the initial velocity has a vertical component. 10

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion Projectile motion is motion with constant acceleration in two dimensions, where the acceleration is g and is down. 11

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion 1. Read the problem carefully, and choose the object(s) you are going to analyze. 2. Draw a diagram. 3. Choose an origin and a coordinate system. 4. Decide on the time interval; this is the same in both directions, and includes only the time the object is moving with constant acceleration g. 5. Examine the x and y motions separately. 12

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion 6. List known and unknown quantities. Remember that v x never changes, and that v y = 0 at the highest point. 7. Plan how you will proceed. Use the appropriate equations; you may have to combine some of them. 13

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion Example 3-6: Driving off a cliff. A movie stunt driver on a motorcycle speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave the cliff top to land on level ground below, 90.0 m from the base of the cliff where the cameras are? Ignore air resistance. 14

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion Example 3-7: A kicked football. A football is kicked at an angle θ 0 = 37.0° with a velocity of 20.0 m/s, as shown. Calculate (a) the maximum height, (b) the time of travel before the football hits the ground, (c) how far away it hits the ground, (d) the velocity vector at the maximum height, and (e) the acceleration vector at maximum height. Assume the ball leaves the foot at ground level, and ignore air resistance and rotation of the ball. 15

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion A child sits upright in a wagon which is moving to the right at constant speed as shown. The child extends her hand and throws an apple straight upward (from her own point of view), while the wagon continues to travel forward at constant speed. If air resistance is neglected, will the apple land (a) behind the wagon, (b) in the wagon, or (c) in front of the wagon? Conceptual Example 3-8: Where does the apple land? 16

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion Conceptual Example 3-9: The wrong strategy. A boy on a small hill aims his water-balloon slingshot horizontally, straight at a second boy hanging from a tree branch a distance d away. At the instant the water balloon is released, the second boy lets go and falls from the tree, hoping to avoid being hit. Show that he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance. 17

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion Example 3-11: A punt. Suppose the football in Example 3–7 was punted and left the punter’s foot at a height of 1.00 m above the ground. How far did the football travel before hitting the ground? Set x 0 = 0, y 0 = 0. 18

Copyright © 2009 Pearson Education, Inc. 3-8 Solving Problems Involving Projectile Motion Examples of projectile motion. Notice the effects of air resistance. 19