Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich
M. LindnerNuFact042 Motivation for Precision surprise! how small? spectrum? Dirac and Majorana CP phases? neutrino masses are physics beyond the Standard Model new window to flavour problem – see-saw amplified! information complimentary to quarks:
M. LindnerNuFact043 Guessing the Neutrino Mass Spectrum quarks hierarchical masses neutrinos? large mixings! inversely correlated hierarchy in M R ? non-hierarchical, type II see-saw,.... ? Quarks and charged leptons: m D ~ H n ; n = 0,1,2 H > Neutrinos: m ~ H n 1< H < 10 See-saw: 1 20 ? >20 m = -m D T M R -1 m D
M. LindnerNuFact044 The Value of Precision for 13 for example: sin 2 2 13 < 0.01 physics question: small 13 numerical coincidence systematic (symmetry,...) how small? precision! models for masses & mixings input: Known masses & mixings distribution of 13 „predictions“ 13 often close to experimental bounds motivates new experiments 13 controls 3-flavour effects like CP-violation
M. LindnerNuFact045 mass spectrum, mixings, CP-phases, LVF, 0 2 decay,... Standard Model extensionsflavour symmetries leptogenesis mechanisms supernovae nucleosynthesis structure formation... renormalization group The Interplay of different Topics -parameters extremely valuable long term: most precise flavour info
M. LindnerNuFact046 x. The Future of Oscillations
M. LindnerNuFact047 2 flavour approximation: P ab = sin 2 (2 sin 2 ( m 2 L/4E) P aa = 1 - P ab Oscillation Channels MSW + parameter mapping
M. LindnerNuFact048 Analytical Description analytic discussion / full numerical simulations degeneracies, correlations,... (sin 2 2 13 ) eff
M. LindnerNuFact049 running: K2K establish / test atm. osc. with beams construction: MINOS (2005) ~ 10% for m 31 2, 23, improve 13 CNGS: ICARUS & OPERA (2006) approval: T2K (JHF-SK) (2008) few% for m 31 2, 23, improve 13 LOIs: NO A (NuMI-OA) (200x) H2K (JHF-HK) (201x) % for m 31 2, 23, 13, CP, sgn( m 2 ) long term: beams, neutrino factory,... (201x) precision.....muon collider.... every stage is a necessary prerequisit for the next continuous line of improvements for beams, detectors, physics!. Long Baseline: Projects and Plans (partly) precision neutrino physics
M. LindnerNuFact0410 Beams conventional beams / superbeams -beams neutrino factories other: laser driven?...?
M. LindnerNuFact0411 Determination of the Physics Potential select a setup (beam, detector, baseline,...) take „most realistic“ parameters best guess! simulate all relevant aspects as good as possible GLoBES determine the potential: „true“ fitted parameters consider other options, time, cost, improvements,... compare only realistic simulations discuss the reliability of the input (assumptions) think of improvements R&D in all directions until decisions must be made
M. LindnerNuFact0412 Sensitivitiy Plots limit for (sin 2 2 13 ) eff sin 2 2 13 systematics correlationsdegeneracies statistical limit (all parameters fixed) limit for sin 2 2 13 from *THIS* experiment only precise knowledge of some parameter combination = precision of the experiment synergies = combine with other experiments gain more than statistics
M. LindnerNuFact0413. 13 Sensitiviy: Comparison of the coming Generation
M. LindnerNuFact0414 Adding a new reactor experiment identical detectors many errors cancel
M. LindnerNuFact0415. 13 Sensitiviy: Comparison of the next Generation Huber, ML, Rolinec, Schwetz, Winter
M. LindnerNuFact0416 Leptonic CP-Violation: Best Case today: sin 2 2 13 < 0.2 assume: sin 2 2 13 = 0.1 and combine: T2K + NO A + Reactor limits or signs of leptonic CP violation Huber, ML, Rolinec, Schwetz, Winter
M. LindnerNuFact0417 Neutrino Factory: I & II define benchmark neutrino factories: magnetized iron detector wrong sign ‘s baseline 3000km P(MW) ‘s/year T +T (y) M(kt) Neutrino factory I: Neutrino factroy II: * _ simulations of various options: Barger, Geer, Raja, Whisnant, Marfatia,... Cervera, Donini, Gavela, Gomez-Cadenaz, Hernandez, Mena, Rigolin,... Bueno, Campanelli, Rubbia,... Minakata, Yasuda,... Freund, Huber, ML, Winter,......
M. LindnerNuFact0418 different sensitivity reductions by systematics correlations & degeneracies lead to severe sensitivity reductions break C&D by combining different experiments of comparable potential T2K NO A
M. LindnerNuFact0419.
M. LindnerNuFact0420 Measurement of CP Violation
M. LindnerNuFact0421 Various Potential Options Initially rate driven improve by combination of different E and/or L or „magic baseline“ combination of different channels or experiments use energy spectrum superbeams: E ≈ GeV large low Z sampling calorimeters ≈ 50 kt superbeams, -beams: E ≈GeV huge Cerenkov detectors ≈ 1000 t huge liquid Ar detectors ≈ 100 kt huge scintillator detectors ≈ 30 kt neutrino factory: E ≈20-50 GeV large magnetized iron Calorimeters ≈ 40kt large magnetized liquid Ar detectors ≈20kt large OPERA-like emulsion detectors ≈5kt laser driven acceleration, …
M. LindnerNuFact0422 Combining: Silver Channels Donini, Meloni, Migliozzi Autiero, et al. golden channel: wrong sign ‘s silver channel : ‘s different oscillation probabilities break degeneracies!
M. LindnerNuFact0423 Energy Resolution =+ /2 =0 = - /2 rate based degeneracies have different energy spectra 730km use energy resolution to break degeneracies A. Rubbia
M. LindnerNuFact0424 A Powerful Simulation Tool General Long Baseline Experiment Simulator P. Huber, ML, W. Winter see parallel talk! hep-ph/0407xxx Release: Aug. 1, 2004 C-based simulation software (GPL – free, for Unix systems) extensive documentation & examples 3 phase approach: experiment definition with AEDL ( Abstract Experiment Definition Language ) simulation of an experiment 3- oscillations; scan „true values“ analysis event distriutions,...., sensitivities,...
M. LindnerNuFact0425 Abstract Experiment Definition Language (AEDL) predefined AEDL files for a number of experiments allows easy modifications of „default“ experiments
M. LindnerNuFact0426 AEDL Description of a Neutrino Factory !%GLoBES /* beam */ = = = = 8.0 > $target_mass = 50 $bins = 20 $emin = 4.0 $emax = 50.0 /* cross section */ = XCC.dat > /* baseline */ $baseline = $densitytab = {3.5} $lengthtab = {3000.0} $density_error = 0.05 /* energy resolution */ = = {0.15,0.0,0.0} /* channels */ = #mu_plus: +: electron: muon: #CC: #MINOS > = #mu_plus: -: muon: muon: #CC: #MINOS > /* rules */ = = : = = 1 : = 0.05 : = = 4.0 : 50.0 >
M. LindnerNuFact0427 GLoBES Simulations sin 2
M. LindnerNuFact0428 MINOS, ICARUS and OPERA - improve leading oscillation parameters; should improve sin 2 2 13 a little T2K, NO A and new reactor experiments - further improved leading oscillation parameters - will improve sin 2 2 13 by about one order of magnitude - with luck: sign( m 2 ) or even CP phase H2K, -beams, neutrino factory - can do all unless sin 2 2 13 is extremely tiny; in any case precision -physics! very precise 3- oscillation parameters sin 2 2 13, sign( m 2 ) and CP phase should be measured unique impact on model building! R&D for -beams, neutrino factories... realistic parameters simulate & compare GLoBES and hep-ph/0407xxx Conclusions