Course Website: Computer Graphics 4: Viewing In 2D.

Slides:



Advertisements
Similar presentations
Computer Graphics 4: Viewing In 2D
Advertisements

I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Andries van Dam September 30, D Clipping 1/14 Clipping (pages , )
Computer Graphics CLIPPING.
Objectives Define Clipping Various clipping methods. Line clipping methods.
CS 551 / 645: Introductory Computer Graphics Clipping Lines and Polygons.
Dr. Scott Schaefer Clipping Lines. 2/94 Why Clip? We do not want to waste time drawing objects that are outside of viewing window (or clipping window)
Two-Dimensional Viewing Jehee Lee Seoul National University.
Computer Graphics : Clipping
Computer Graphics Viewing.
Clipping CSE 403 Computer Graphics Cohen Sutherland Algorithm (Line)
Viewing & Clipping In 2D. 2 of 44 Contents Windowing Concepts Clipping –Introduction –Brute Force –Cohen-Sutherland Clipping Algorithm Area Clipping –Sutherland-Hodgman.
CMPE 466 COMPUTER GRAPHICS Chapter 8 2D Viewing Instructor: D. Arifler Material based on - Computer Graphics with OpenGL ®, Fourth Edition by Donald Hearn,
2D Viewing and Projection
2 D viewing Prepared by Elizabeth Isaac DCS, RSET.
Introduction to Computer Graphics Chapter 6 – 2D Viewing Pt 2 1.
Informationsteknologi Thursday, November 22, 2007Computer Graphics - Class 111 Today’s class Clipping Parametric and point-normal form of lines Intersecting.
Vertices and Fragments I CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
1 Computer Graphics Chapter 4 2D Viewing Algorithms.
1 King ABDUL AZIZ University Faculty Of Computing and Information Technology CS 454 Computer graphics Two Dimensional Viewing Dr. Eng. Farag Elnagahy
Course Website: Computer Graphics 9: Clipping In 3D.
1 CSCE 441 Computer Graphics: Clipping Lines Jinxiang Chai.
Computer Graphics Clipping Cohen Sutherland Algorithm (Line) Cyrus-Back Algorithm (Line) Sutherland-Hodgeman Algorithm (Polygon) Cohen Sutherland Algorithm.
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Clipping.
University College Dublin1 Clipping u Clipping is the removal of all objects or part of objects in a modelled scene that are outside the real-world window.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Implementation I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Graphics Pipeline Clipping CMSC 435/634. Graphics Pipeline Object-order approach to rendering Sequence of operations – Vertex processing – Transforms.
2-Dimension Viewing and Clipping
Clipping Apart from clipping to the view volume, clipping is a basic operation in many other algorithms –Breaking space up into chunks –2D drawing and.
Windowing and clipping
CS 376 Introduction to Computer Graphics 02 / 12 / 2007 Instructor: Michael Eckmann.
Two-Dimensional Viewing
Clipping: Clipping is a process of dividing an object into visible and invisible positions and displaying the visible portion and discarding the invisible.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
CS 480/680 Computer Graphics Shading in OpenGL Dr. Frederick C Harris, Jr. Fall 2013.
Graphics Graphics Korea University cgvr.korea.ac.kr 1 2D Viewing 고려대학교 컴퓨터 그래픽스 연구실.
CSE Real Time Rendering Week 9. Post Geometry Shaders Courtesy: E. Angel and D. Shreiner – Interactive Computer Graphics 6E © Addison-Wesley 2012.
Clipping Computer Graphics Cohen Sutherland Algorithm (Line)
Windows, Viewports, and Clipping
Unit – IV 2D Viewing. 2 of 30 Contents Windowing Concepts The viewing pipeline viewing coordinate reference frame, window to view-port coordinate transformation,
EEL Introduction to Computer Graphics
1 Computer Graphics Clipping Fall FCC Line Clipping What happens when one or both endpoints of a line segment are not inside the specified drawing.
1Computer Graphics Implementation 1 Lecture 15 John Shearer Culture Lab – space 2
2D Viewing.
Introduction to Computer Graphics Chapter 6 – 2D Viewing Pt 3 1.
Clipping Primitives. Clipping line Clipping rectangle: – x min to x max – y min to y max A point (x,y) lies within a clip rectangle and thus displayed.
Clipping. Before clipping… After clipping… Point Clipping Display P = (x, y) if xw min
Computer Graphics Viewing. 2 of 30 Viewing in 2D Window in world coordinates. 45  250  Viewport in Device coords 250 x 250 Pixels.
CS552: Computer Graphics Lecture 12: 3D Clipping.
Clipping.
Computer Graphics Lecture 14 CLIPPING I Taqdees A. Siddiqi
Computer Graphic 2 D Viewing.
Computer Graphics Clipping.
Introduction to Computer Graphics with WebGL
Computer Graphics CC416 Week 13 Clipping.
Transformations contd.
Computer Graphics Shading in OpenGL
Concepts, Algorithms for line clipping
Concepts, algorithms for clipping
Implementation I Ed Angel
Graphics Pipeline Clipping
Computer Graphics 9: Clipping In 3D
Chapter 7 2D Clipping.
WINDOWING AND CLIPPING
o عَلَّمَهُ الْبَيَانَ
Computer Graphics : Viewing In 2D
WINDOWING AND CLIPPING
CSCE 441 Computer Graphics: Clipping Polygons Jinxiang Chai
Clipping Clipping Sutherland-Hodgman Clipping
Computer Graphics Viewing. 2 of 30 Viewing in 2D Window in world coordinates. 45  250  Viewport in Device coords 250 x 250 Pixels.
Implementation I Ed Angel Professor Emeritus of Computer Science
Presentation transcript:

Course Website: Computer Graphics 4: Viewing In 2D

2 of 30 Contents Windowing Concepts Clipping –Introduction –Brute Force –Cohen-Sutherland Clipping Algorithm Area Clipping –Sutherland-Hodgman Area Clipping Algorithm

3 of 30 Windowing I A scene is made up of a collection of objects specified in world coordinates World Coordinates

4 of 30 Windowing II When we display a scene only those objects within a particular window are displayed wy max wy min wx min wx max Window World Coordinates

5 of 30 Windowing III Because drawing things to a display takes time we clip everything outside the window wy max wy min wx min wx max World Coordinates Window

6 of 30 Clipping For the image below consider which lines and points should be kept and which ones should be clipped wy max wy min wx min wx max Window P1P1 P2P2 P3P3 P6P6 P5P5 P7P7 P 10 P9P9 P4P4 P8P8

7 of 30 Point Clipping Easy - a point ( x,y ) is not clipped if: wx min ≤ x ≤ wx max AND wy min ≤ y ≤ wy max otherwise it is clipped wy max wy min wx min wx max Window P1P1 P2P2 P5P5 P7P7 P 10 P9P9 P4P4 P8P8 Clipped Points Within the Window are Not Clipped Clipped

8 of 30 Line Clipping Harder - examine the end-points of each line to see if they are in the window or not SituationSolutionExample Both end-points inside the window Don’t clip One end-point inside the window, one outside Must clip Both end-points outside the window Don’t know!

9 of 30 Brute Force Line Clipping Brute force line clipping can be performed as follows: –Don’t clip lines with both end-points within the window –For lines with one end- point inside the window and one end-point outside, calculate the intersection point (using the equation of the line) and clip from this point out

10 of 30 Brute Force Line Clipping (cont…) –For lines with both end- points outside the window test the line for intersection with all of the window boundaries, and clip appropriately However, calculating line intersections is computationally expensive Because a scene can contain so many lines, the brute force approach to clipping is much too slow

11 of 30 Cohen-Sutherland Clipping Algorithm An efficient line clipping algorithm The key advantage of the algorithm is that it vastly reduces the number of line intersections that must be calculated Dr. Ivan E. Sutherland co-developed the Cohen- Sutherland clipping algorithm. Sutherland is a graphics giant and includes amongst his achievements the invention of the head mounted display. Cohen is something of a mystery – can anybody find out who he was?

12 of 30 Cohen-Sutherland: World Division World space is divided into regions based on the window boundaries –Each region has a unique four bit region code –Region codes indicate the position of the regions with respect to the window Window abovebelowrightleft 3210 Region Code Legend

13 of 30 Cohen-Sutherland: Labelling Every end-point is labelled with the appropriate region code wy max wy min wx min wx max Window P 3 [0001] P 6 [0000] P 5 [0000] P 7 [0001] P 10 [0100] P 9 [0000] P 4 [1000] P 8 [0010] P 12 [0010] P 11 [1010] P 13 [0101] P 14 [0110]

14 of 30 Cohen-Sutherland: Lines In The Window Lines completely contained within the window boundaries have region code [0000] for both end-points so are not clipped wy max wy min wx min wx max Window P 3 [0001] P 6 [0000] P 5 [0000] P 7 [0001] P 10 [0100] P 9 [0000] P 4 [1000] P 8 [0010] P 12 [0010] P 11 [1010] P 13 [0101] P 14 [0110]

15 of 30 Cohen-Sutherland: Lines Outside The Window Any lines with a common set bit in the region codes of both end-points can be clipped –The AND operation can efficiently check this wy max wy min wx min wx max Window P 3 [0001] P 6 [0000] P 5 [0000] P 7 [0001] P 10 [0100] P 9 [0000] P 4 [1000] P 8 [0010] P 12 [0010] P 11 [1010] P 13 [0101] P 14 [0110]

16 of 30 Cohen-Sutherland: Other Lines Lines that cannot be identified as completely inside or outside the window may or may not cross the window interior These lines are processed as follows: –Compare an end-point outside the window to a boundary (choose any order in which to consider boundaries e.g. left, right, bottom, top) and determine how much can be discarded –If the remainder of the line is entirely inside or outside the window, retain it or clip it respectively

17 of 30 Cohen-Sutherland: Other Lines (cont…) –Otherwise, compare the remainder of the line against the other window boundaries –Continue until the line is either discarded or a segment inside the window is found We can use the region codes to determine which window boundaries should be considered for intersection –To check if a line crosses a particular boundary we compare the appropriate bits in the region codes of its end-points –If one of these is a 1 and the other is a 0 then the line crosses the boundary

18 of 30 Cohen-Sutherland Examples Consider the line P 9 to P 10 below –Start at P 10 –From the region codes of the two end-points we know the line doesn’t cross the left or right boundary –Calculate the intersection of the line with the bottom boundary to generate point P 10 ’ –The line P 9 to P 10 ’ is completely inside the window so is retained wy max wy min wx min wx max Window P 10 [0100] P 9 [0000] P 10 ’ [0000] P 9 [0000]

19 of 30 Cohen-Sutherland Examples (cont…) Consider the line P 3 to P 4 below –Start at P 4 –From the region codes of the two end-points we know the line crosses the left boundary so calculate the intersection point to generate P 4 ’ –The line P 3 to P 4 ’ is completely outside the window so is clipped wy max wy min wx min wx max Window P 4 ’ [1001] P 3 [0001] P 4 [1000] P 3 [0001]

20 of 30 Cohen-Sutherland Examples (cont…) Consider the line P 7 to P 8 below –Start at P 7 –From the two region codes of the two end-points we know the line crosses the left boundary so calculate the intersection point to generate P 7 ’ wy max wy min wx min wx max Window P 7 ’ [0000] P 7 [0001] P 8 [0010] P 8 ’ [0000]

21 of 30 Cohen-Sutherland Examples (cont…) Consider the line P 7 ’ to P 8 –Start at P 8 –Calculate the intersection with the right boundary to generate P 8 ’ –P 7 ’ to P 8 ’ is inside the window so is retained wy max wy min wx min wx max Window P 7 ’ [0000] P 7 [0001] P 8 [0010] P 8 ’ [0000]

22 of 30 Cohen-Sutherland Worked Example wy max wy min wx min wx max Window

23 of 30 Calculating Line Intersections Intersection points with the window boundaries are calculated using the line- equation parameters –Consider a line with the end-points ( x 1, y 1 ) and ( x 2, y 2 ) –The y-coordinate of an intersection with a vertical window boundary can be calculated using: y = y 1 + m (x boundary - x 1 ) where x boundary can be set to either wx min or wx max

24 of 30 Calculating Line Intersections (cont…) –The x-coordinate of an intersection with a horizontal window boundary can be calculated using: x = x 1 + (y boundary - y 1 ) / m where y boundary can be set to either wy min or wy max –m is the slope of the line in question and can be calculated as m = (y 2 - y 1 ) / (x 2 - x 1 )

25 of 30 Area Clipping Similarly to lines, areas must be clipped to a window boundary Consideration must be taken as to which portions of the area must be clipped

26 of 30 Sutherland-Hodgman Area Clipping Algorithm A technique for clipping areas developed by Sutherland & Hodgman Put simply the polygon is clipped by comparing it against each boundary in turn Original AreaClip LeftClip RightClip TopClip Bottom Sutherland turns up again. This time with Gary Hodgman with whom he worked at the first ever graphics company Evans & Sutherland

27 of 30 Sutherland-Hodgman Area Clipping Algorithm (cont…) To clip an area against an individual boundary: –Consider each vertex in turn against the boundary –Vertices inside the boundary are saved for clipping against the next boundary –Vertices outside the boundary are clipped –If we proceed from a point inside the boundary to one outside, the intersection of the line with the boundary is saved –If we cross from the outside to the inside intersection point and the vertex are saved

28 of 30 Sutherland-Hodgman Example Each example shows the point being processed (P) and the previous point (S) Saved points define area clipped to the boundary in question S P Save Point P S P Save Point I I P S No Points Saved S P Save Points I & P I

29 of 30 Other Area Clipping Concerns Clipping concave areas can be a little more tricky as often superfluous lines must be removed Clipping curves requires more work –For circles we must find the two intersection points on the window boundary Window

30 of 30 Summary Objects within a scene must be clipped to display the scene in a window Because there are can be so many objects clipping must be extremely efficient The Cohen-Sutherland algorithm can be used for line clipping The Sutherland-Hodgman algorithm can be used for area clipping

31 of 30

32 of 30 Cohen-Sutherland Clipping Algorithm VI Let’s consider the lines remaining below wy max wy min wx min wx max Window P 3 [0001] P 6 [0000] P 5 [0000] P 7 [0001] P 10 [0100] P 9 [0000] P 4 [1000] P 8 [0010] P 12 [0010] P 11 [1010] P 13 [0101] P 14 [0110]

33 of 30 Cohen-Sutherland Clipping Algorithm Easy - a point ( x,y ) is not clipped if: wx min ≤ x ≤ wx max AND wy min ≤ y ≤ wy max otherwise it is clipped wy max wy min wx min wx max Window P1P1 P2P2 P5P5 P7P7 P 10 P9P9 P4P4 P8P8 Clipped Points Within the Window are Not Clipped Clipped

34 of 30 Clipping Point clipping is easy: –For point ( x,y ) the point is not clipped if wx min ≤ x ≤ wx max AND wy min ≤ y ≤ wy max wy max wy min wx min wx max Before Clipping Window P1P1 P2P2 P3P3 P6P6 P5P5 P7P7 P 10 P9P9 P4P4 P8P8