FIG. 1.4 Deformations produced by the components of internal forces and couples.

Slides:



Advertisements
Similar presentations
Statically Determinate and Indeterminate System of Bars.
Advertisements

MAE 314 – Solid Mechanics Yun Jing
MAE 314 – Solid Mechanics Yun Jing
Introduction – Concept of Stress
Introduction – Concept of Stress
Chapter 4 AXIAL LOADING.
Ch 1 Sec 3,4,5 Definition of Stress – Sec 3 Average Normal Stress – Sec 4 Average Shear Stress – Sec 5.
ENGR 225 Section Saint-Venant’s Principle When loading is applied at a point on a body, it tends to create a stress distribution that becomes.
ENGR 220 Section
4 Pure Bending.
Copyright © 2011 Pearson Education South Asia Pte Ltd
Axially loaded member Axial load and normal stress under equilibrium load, Elastic Deformation.
Introduction – Concept of Stress
Introduction – Concept of Stress
 2005 Pearson Education South Asia Pte Ltd TUTORIAL-1 : UNIAXIAL LOAD 1 PROBLEM-1 1 m P A composite A-36 steel bar shown in the figure has 2 segments,
10 Pure Bending.
Chapter 1 Stress.
MECHANICS OF MATERIALS 7th Edition
CHAPTER OBJECTIVES Review important principles of statics
 2005 Pearson Education South Asia Pte Ltd TUTORIAL-1 : UNIAXIAL LOAD 1 PROBLEM-1 1 m P A composite A-36 steel bar shown in the figure has 2 segments,
9 Torsion.
MECHANICS OF MATERIALS Third Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: S.A.A.Oloomi CHAPTER © 2006 Islamic Azad.
CHAPTER OBJECTIVES Review important principles of statics
Chapter 1: Stress Review important principles of statics
Design of a Transmission Shaft
MECHANICS OF MATERIALS Fourth Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
ENT 153 TUTORIAL 1.
Engineering Mechanics: Statics
 2005 Pearson Education South Asia Pte Ltd TUTORIAL-1 : UNIAXIAL LOAD 1 PROBLEM-1 1 m P A composite A-36 steel bar shown in the figure has 2 segments,
 2005 Pearson Education South Asia Pte Ltd TUTORIAL-1 : STRESS & STRAIN 1 PROBLEM-1 The hanger assembly is used to support a distributed loading of w=16kN/m.
CTC / MTC 322 Strength of Materials
Introduction – Concept of Stress
Overview of Mechanical Engineering for Non-MEs Part 2: Mechanics of Materials 6 Introduction – Concept of Stress.
1.5 AVERAGE SHEAR STRESS Shear stress is the stress component that act in the plane of the sectioned area. Consider a force F acting to the bar For rigid.
Machine Design I (MCE-C 203) Mechatronics Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb Lecturer, Mechanical Engineering.
 2005 Pearson Education South Asia Pte Ltd 4. Axial Load 1 CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find.
3 Torsion.
CTC / MTC 222 Strength of Materials Chapter 3 Design for Direct Stress.
Stress Concentrations
Deformation of Axially Loaded Members - Single Member
MECHANICS OF MATERIALS Fourth Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
Strength of Materials Malayer University Department of Civil Engineering Taught by: Dr. Ali Reza Bagherieh In The Name of God.
Structure Analysis I. Lecture 7 Internal Loading Developed in Structural Members Ch.4 in text book.
Beams - structural members supporting loads at various points along the member. Transverse loadings of beams are classified as concentrated loads or distributed.
Lecture 1 Stress 16 July 2007 ENT 450 Mechanics of Materials Dr. Haftirman 1 ENT 450 MECHANICS OF MATERIALS (MoM) RC. Hibbler Lecture: DR. HAFTIRMAN Teaching.
Tutorial 7_Review MECH 101 Liang Tengfei Office phone : Mobile : Office hour : 14:00-15:00 Fri 1.
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
MECHANICS OF MATERIALS Fifth SI Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech.
Mechanics of Solids (M2H321546)
Design of a Transmission Shaft
Pure Bending.
Introduction – Concept of Stress
Concept of Stress.
Chapter 4 Axial Load.
Chapter 1 Stress and Strain.
Ch 4 – Axial Load (part 1 – sections 4.1 and 4.2 only)
4 Pure Bending.
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Statically Determine of Beams and Frames
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
Introduction – Concept of Stress
CHAPTER OBJECTIVES Determine deformation of axially loaded members
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg.
Concept of Stress.
Revision.
CHAPTER OUTLINE Introduction Equilibrium of a deformable body Stress
4 Pure Bending.
Copyright ©2014 Pearson Education, All Rights Reserved
Presentation transcript:

FIG. 1.4 Deformations produced by the components of internal forces and couples

FIG. 1.6 A bar loaded axially by (a) uniformly distributed load of intensity p; and (b) a statically equivalent centroidal force P = pA

ILLUSTRATING ST. VENANT’S PRINCIPLE FIG. 1.7 Normal stress distribution in a strip caused by a concentrated load ILLUSTRATING ST. VENANT’S PRINCIPLE

FIG. 1.9 Determining the stresses acting on an inclined section of a bar

FIG. 1.10 Stresses acting on two mutually perpendicular inclined sections of a bar

PROCEDURE FOR STRESS ANALYSIS In general, finding the normal stress in an axially loaded member of a structure involves the following steps: •Equilibrium Analysis •Computation of Stresses

Sample Problem 1.1 The bar ABCD in Figure (a) consists of three cylindrical steel segments, each with a different cross-sectional area. Axial loads are applied as shown. Calculate the normal stress in each segment.

Sample Problem 1.2 For the truss shown in Fig. (a), calculate the normal stresses in (1) member AC; and (2) member BD. The cross-sectional area of each member is 900 mm2.

Sample Problem 1.3 Figure (a) shows a two-member truss supporting a block of weight W. The cross-sectional areas of the members are 800 mm2 for AB and 400 mm2 for AC. Determine the maxi- mum safe value of W if the working stresses are 110 MPa for AB and 120 MPa for AC. (a)

GUIDED PROBLEMS Problem 1.1 The compound bar ABCD consists of three segments, each of a different material with different dimensions. Compute the stress in each segment when the axial loads are applied.

Problem 1.2 Neglecting the weights of bars OAB and AC, determine the stress in the bar AC.

Problem 1.3 The cross-sectional area of each member of the truss is 4.2 in2. Calculate the stresses in members CD and CF.