Evolution and Ecology.

Slides:



Advertisements
Similar presentations
Evolution of Populations
Advertisements

Chapter 16: Evolution of Populations
Evolution Chapter 16.
Evolution and Ecology.
Evolution by Natural Selection
Mechanisms of Evolution and Their Effects on Populations Part 2 SBI3U Evolution - 8.
Lesson Overview 17.1 Genes and Variation.
Evolution of Populations
KEY CONCEPT A population shares a common gene pool.
Theory of Evolution Chapter 15.
Evolution of Populations
Population and Speciation
Natural Selection Developed by Charles Darwin in 1859
KEY CONCEPT A population shares a common gene pool.
KEY CONCEPT A population shares a common gene pool.
Understanding the Diversity of Life Part 2 EVOLUTION & SPECIATION 1 1.
How Does Evolution Work? Individual organisms cannot evolve. Populations of a particular species evolve. Natural selection acts on the range of phenotypes.
Population GENETICS.
Main Points of Darwin’s Theory of Natural Selection
Beyond Darwin 16.3 and some 17 Notes Can an individual evolve? Is evolution the survival of the fittest? Is evolution predictable?
Part 2 Evolution Notes. Natural Selection and Macroevolution Natural Selection shapes a population, making it adapted to its current environment. This.
1 1 Population Genetics. 2 2 The Gene Pool Members of a species can interbreed & produce fertile offspring Species have a shared gene pool Gene pool –
Population Genetics youtube. com/watch
POPULATION GENETICS 1. Outcomes 4. Discuss the application of population genetics to the study of evolution. 4.1 Describe the concepts of the deme and.
Biology EOC Review Evolution. Evolution Explain biological evolution as the consequence of the interaction of population growth, inherited variability.
Genetics and Speciation
Evolution commons.wikimedia.org/wiki/Image:Charles_Darwin_1881.jpgcommons.wikimedia.org/wiki/Image:DNA_double_helix_vertikal.PNG.
Evolution by Natural Selection
Chapter 15 and 16 Evolution - Change through time.
Evolution of Populations. How Common Is Genetic Variation? Many genes have at least two forms, or alleles. Many genes have at least two forms, or alleles.
MECHANISMS OF EVOLUTION. POPULATIONS, NOT INDIVIDUALS, EVOLVE An organism cannot change its phenotype. A phenotype can become more predominant in a population,
Evolution Chapter 16 regents. Copyright Pearson Prentice Hall How Common Is Genetic Variation? Many genes have at least two forms, or alleles. All organisms.
T. Dobzhansky (geneticist) “Nothing in biology makes sense except in the light of evolution”
1 1 Population Genetics. 2 2 The Gene Pool Members of a species can interbreed & produce fertile offspring Species have a shared gene pool Gene pool –
CAMPBELL BIOLOGY Reece Urry Cain Wasserman Minorsky Jackson © 2014 Pearson Education, Inc. TENTH EDITION 23 The Evolution of Populations.
Mechanisms of Evolution Biology Mr. Solis. Populations, Not Individuals Evolve An organism cannot evolve a new phenotype, but rather natural selection.
Evolution Pre-AP Biology. Charles Darwin Known as the Father of Evolution Known as the Father of Evolution Wrote book On the Origin of Species Wrote book.
Biology 3201 Chapters The Essentials. Micro vs. Macro Evolution Micro Evolution Evolution on a smaller scale. This is evolution within a particular.
Mechanisms of Evolution
Chapter 6 Ecology and Evolution. Case Study: Inadvertent Evolution Bighorn Sheep: Ovis canadensis; have the ability to balance on steep ledges Males can.
Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings Evolution, Biodiversity and Extinctions.
A B C D E F G. Charles Darwin Natural Selection.
Biological Evolution Standard B – 5.4. Standard B-5 The student will demonstrate an understanding of biological evolution and the diversity of life. Indicator.
(23) Evolution of Populations- Microevolution Natural selection acts on individuals, but only populations evolve. Consider, for example, a population of.
Evolution of Populations Chapter 11. Terms Population- a collection of individuals of the same species in a common area These members can interbreed so.
WHO WANTS TO BE A MILLIONAIRE? Chapter 11 A:B: Gene pool Allele frequency #1 A measure of how commonly a particular allele Occurs in a population is.
Natural Selection Videos Videos Natural selection Natural selection Speciation Population Genetics Population Genetics Evidence of evolution Evidence of.
The Theory of Evolution.  Darwin developed the first theory on evolution, which is the basis for modern evolutionary theory ◦ Darwin spent 5 years sailing.
Evolution of Populations Chapter : Genes and Variation Population: group of individuals in the same species that interbreed; share a common gene.
Evolution – Genetic Variation Within Populations  Key Concept:  A population shares a common gene pool.
Evolution of Populations. Individual organisms do not evolve. This is a misconception. While natural selection acts on individuals, evolution is only.
Evolution Natural Selection Evolution of Populations Microevolution vs. Macroevolution.
Evolution of Populations
11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool.
15.3 Shaping Evolutionary Theory 7(E) Analyze and evaluate the relationship of natural selection to adaptation and to the development of diversity in and.
Evolution: A change in gene frequency within a population Evolution 201.
11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool.
Natural Selection and Evolution
Evolution, Biodiversity and Extinctions
Chapter 11: Evolution of Populations
The Theory of Evolution
Section 3: Shaping Evolutionary Theory
Reminder: Populations
Population Genetics.
Random Change Changes in a gene pool can be caused by a number of different factors: Small populations are prone to changes in gene frequency from chance.
11.1 Genetic Variation within Popln
Biological Evolution and Environmental Factors
15.2 Mechanisms of Evolution
The Evolution of Populations Ch. 11
Theory of Natural Selection
Presentation transcript:

Evolution and Ecology

Chapter 6 Evolution and Ecology CONCEPT 6.1 Evolution can be viewed as genetic change over time or as a process of descent with modification. CONCEPT 6.2 Natural selection, genetic drift, and gene flow can cause allele frequencies in a population to change over time. CONCEPT 6.3 Natural selection is the only evolutionary mechanism that consistently causes adaptive evolution.

Chapter 6 Evolution and Ecology CONCEPT 6.4 Long-term patterns of evolution are shaped by large-scale processes such as speciation, mass extinction, and adaptive radiation. CONCEPT 6.5 Ecological interactions and evolution exert a profound influence on one another.

Trophy Hunting and Inadvertent Evolution: A Case Study Bighorn sheep populations have been reduced by 90% by hunting, habitat loss, and introduction of domestic cattle. Hunting is now restricted in North America; permits to take a large “trophy ram” cost over $100,000.

Figure 6.1 Fighting over the Right to Mate Ecology3e-Fig-06-01-0.jpg

Trophy Hunting and Inadvertent Evolution: A Case Study Trophy hunting removes the largest and strongest males—the ones that would sire many healthy offspring. In one population, 10% of males were removed by hunting each year. The average size of males and their horns decreased over 30 years of study.

Figure 6.2 Trophy Hunting Decreases Ram Body and Horn Size Ecology3e-Fig-06-02-0R.jpg

Trophy Hunting and Inadvertent Evolution: A Case Study This is also being observed in other species: By targeting older, larger fish, commercial cod fishing has selected for genes that result in maturation at earlier ages and smaller size. Fish that mature earlier can reproduce before they are caught, but small fish produce fewer eggs.

Trophy Hunting and Inadvertent Evolution: A Case Study African elephants are poached for ivory; the proportion of the population that have tusks is decreasing. The unintended effects of human harvesting on these animals illustrate how populations can change, or evolve, over time. 9

Ecology and evolution are strongly interconnected. Introduction Humans have a large impact on the environment—pollution, land use change, climate change, etc. We are just beginning to realize that we also cause evolutionary change and the consequences of this. Ecology and evolution are strongly interconnected.

CONCEPT 6.1 Evolution can be viewed as genetic change over time or as a process of descent with modification.

Concept 6.1 What Is Evolution? Horn size in bighorn sheep is a heritable trait. Trophy hunting selectively eliminates rams with large horns, thus favoring rams with genes for small horns. Trophy hunting is likely causing the genetic makeup of bighorn sheep populations to change, or evolve, over time.

Concept 6.1 What Is Evolution? Genes are made of DNA and specify (encode) protein structure. Genes can have two or more forms called alleles. Genotype is the genetic makeup of an individual.

Concept 6.1 What Is Evolution? A genotype is represented by letters, one for each allele. One allele is inherited from the mother, one from the father. Example: Two alleles, A and a; individuals could be AA, Aa, or aa.

Concept 6.1 What Is Evolution? Evolution is change in allele frequencies (proportions) in a population over time. For example, if the frequency of a in a population is 0.4 or 40%, the frequency of A is 0.6 or 60%. If the frequency of a changed to 71%, the population would have evolved at that gene.

Concept 6.1 What Is Evolution? Evolution can be defined more broadly as descent with modification. As a population accumulates differences over time and a new species forms, it is different from its ancestors. But the new species has many of the same characteristics as its ancestors and resembles them.

Concept 6.1 What Is Evolution? Charles Darwin used the phrase “descent with modification.” He proposed that populations change over time through natural selection: Individuals with certain heritable traits survive and reproduce more successfully than other individuals.

Concept 6.1 What Is Evolution? If two populations experience different environmental conditions, different characteristics may be favored. Natural selection causes the populations to diverge genetically over time.

Figure 6.4 Natural Selection Can Result in Differences between Populations Ecology3e-Fig-06-04-0.jpg

Concept 6.1 What Is Evolution? Natural selection acts as a sorting process. Individuals with favored traits have more offspring, and their alleles will increase in frequency in the population. The population will evolve, but individuals do not evolve.

CONCEPT 6.2 Natural selection, genetic drift, and gene flow can cause allele frequencies in a population to change over time.

Concept 6.2 Mechanisms of Evolution Phenotype: Observable characteristics that are determined by the genotype. Individuals differ from one another in part because they have different alleles for genes.

Figure 6.5 Individuals in Populations Differ in Their Phenotypes Ecology3e-Fig-06-05-0.jpg

Concept 6.2 Mechanisms of Evolution Different alleles arise by mutation—a change in DNA. Mutations can result from copying errors during cell division, mechanical damage, exposure to chemicals (mutagens) or high-energy radiation.

Concept 6.2 Mechanisms of Evolution Formation of new alleles is critical to evolution. If mutation did not produce new alleles, all members of a population would have identical genotypes and evolution could not occur.

Concept 6.2 Mechanisms of Evolution Recombination also produces different genotypes within a population. Offspring have combinations of alleles that differ from those of their parents. Mutation provides the raw material on which evolution is based; recombination rearranges the raw material into new combinations.

Concept 6.2 Mechanisms of Evolution Mutations are actually very rare. In a generation, one mutation would occur in every 10,000 to 1,000,000 copies of a gene. In one generation, mutation acting alone causes virtually no change in allele frequencies of a population.

Concept 6.2 Mechanisms of Evolution Three types of natural selection: 1. Directional selection: Individuals at one phenotypic extreme (e.g., large size) are favored. Example: Drought favored large beak size in medium ground finches.

Figure 6.6 Three Types of Natural Selection (Part 1) Ecology3e-Fig-06-06-1R.jpg

Concept 6.2 Mechanisms of Evolution 2. Stabilizing selection: Individuals with an intermediate phenotype are favored. Example: Parasitic wasps select for small gall size of Eurosta flies; while birds select for large gall size.

Figure 6.6 Three Types of Natural Selection (Part 2) Ecology3e-Fig-06-06-2R.jpg

Concept 6.2 Mechanisms of Evolution 3. Disruptive selection: Individuals at both phenotypic extremes are favored. Example: African seedcrackers (birds) have two food sources—hard seeds that require large beaks to crack, and smaller, softer seeds that smaller beaks are more suited to.

Figure 6.6 Three Types of Natural Selection (Part 3) Ecology3e-Fig-06-06-3R.jpg

Concept 6.2 Mechanisms of Evolution Natural selection can result in populations in which all individuals have the favored allele: Andean geese have evolved a type of hemoglobin with a very high affinity for O2, an advantage at high altitudes. The allele frequency for this trait is 100%.

Concept 6.2 Mechanisms of Evolution Genetic drift occurs when chance events determine which alleles are passed to the next generation. It is significant only for small populations.

Concept 6.2 Mechanisms of Evolution Genetic drift has four effects on small populations: 1. It acts by chance alone, thus causing allele frequencies to fluctuate at random. Some may disappear, others may reach 100% frequency (fixation).

Figure 6.7 Genetic Drift Causes Allele Frequencies to Fluctuate at Random Ecology3e-Fig-06-07-0R.jpg

Concept 6.2 Mechanisms of Evolution 2. Because some alleles are lost, genetic variation of the population is reduced. 3. Frequency of harmful alleles can increase if the alleles have only mildly deleterious effects. 4. Differences between populations can increase. Chance events may lead to allele fixation in one population and loss from another population.

Concept 6.2 Mechanisms of Evolution 2 and 3 can have dire consequences. Loss of genetic variation reduces the ability of the population to respond to changing environmental conditions. Increase of harmful alleles can reduce survival and reproduction. These effects are important for species that are near extinction.

Concept 6.2 Mechanisms of Evolution Gene flow: Alleles move between populations via movement of individuals or gametes. Gene flow has two effects: 1. Populations become more similar. 2. New alleles can be introduced into a population.

CONCEPT 6.3 Natural selection is the only evolutionary mechanism that consistently causes adaptive evolution.

Concept 6.3 Adaptive Evolution Adaptations are features of organisms that improve their ability to survive and reproduce. Adaptations include morphological and physiological features such as enzymes that function at high temperatures. 42

Figure 6.11 Adaptive Evolution in Soapberry Bugs Ecology3e-Fig-06-11-0R.jpg

Concept 6.3 Adaptive Evolution Rapid adaptive evolution can happen on a continental scale. Clines are patterns of change in a characteristic over a geographic region.

Figure 6.12 Rapid Adaptive Evolution on a Continental Scale Ecology3e-Fig-06-12-0R.jpg

Concept 6.3 Adaptive Evolution Adaptive evolution is driven by ecological interactions—organisms interacting with one another and with their environment. Ecology is a basis for understanding natural selection.

CONCEPT 6.4 Long-term patterns of evolution are shaped by large-scale processes such as speciation, mass extinction, and adaptive radiation.

Concept 6.4 The Evolutionary History of Life Species: Group of organisms whose members have similar characteristics and can interbreed. Speciation: The process by which one species splits into two or more species.

Concept 6.4 The Evolutionary History of Life Speciation most commonly occurs when a barrier prevents gene flow between two or more populations of a species. Barriers can be geographic or ecological. The populations then diverge genetically over time.

Figure 6.14 Speciation by Genetic Divergence Ecology3e-Fig-06-14-0R.jpg

Concept 6.4 The Evolutionary History of Life The key step in speciation occurs when a population accumulates so many genetic differences that they cannot produce viable, fertile offspring if they mate with the parental species.

Concept 6.4 The Evolutionary History of Life Repeated speciation events increases the number of species in a group, but some species are also lost to extinction. An evolutionary tree is a branching diagram that represents the evolutionary history of a group.

Figure 6.16 An Evolutionary Tree of the Pinnipeds (Part 1) Ecology3e-Fig-06-16-0R.jpg

Figure 6.18 The “Big Five” Mass Extinctions Ecology3e-Fig-06-18-0R.jpg

Concept 6.4 The Evolutionary History of Life Each mass extinction was followed by an adaptive radiation: Increased diversity of the surviving groups. Mass extinctions remove competitor groups, allowing survivors to expand into new habitats or new ways of life.

Concept 6.4 The Evolutionary History of Life Adaptive radiations can also occur when a group evolves major new adaptations. Example: Stems that provide support and waxy cuticles that prevent drying allowed adaptive radiation of terrestrial plants.

Concept 6.4 The Evolutionary History of Life Biological communities are devastated by mass extinction events. It takes millions of years for diversity to increase to the levels seen prior to the mass extinction. This has great implications if human activities cause a sixth mass extinction.

Concept 6.4 The Evolutionary History of Life Coevolution: Reciprocal evolutionary change in interacting species.

CONCEPT 6.5 Ecological interactions and evolution exert a profound influence on one another.

Concept 6.5 Joint Effects of Ecology and Evolution The sunflower Helianthus anomalus arose as a hybrid between two other species. The hybrid has new gene combinations that allow it to grow in a different environment than the parent species. In the new environment, the hybrid became a new species.

Figure 6.21 A Hybrid That Lives in a New Environment Ecology3e-Fig-06-21-0R.jpg

Concept 6.5 Joint Effects of Ecology and Evolution Hybridization resulted in an ecological shift that illustrates how evolution influences ecology. But life under different ecological conditions provided the selection pressures that molded the hybrid into a new species, showing how ecology influences evolution.

Concept 6.5 Joint Effects of Ecology and Evolution Evolution can result from a range of ecological interactions, including predation, competition, herbivory, parasitism, and mutualism. Speciation is often caused by ecological factors. 63

Concept 6.5 Joint Effects of Ecology and Evolution Evolution can alter ecological interactions. If a predator evolves a new way to capture prey, they prey species may go extinct, decline, migrate to other areas, or evolve new ways to cope with the more efficient predator.

Connections in Nature: The Human Impact on Evolution When human actions drive a species to extinction, the course of evolution is altered. Many scientists think humans are causing a sixth mass extinction. If so, our actions will greatly and irreversibly change the evolutionary history of life on Earth.