Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Lecture #6 OUTLINE Carrier scattering mechanisms Drift current
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
L 04 Sept 041 EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization EE5342, Lecture 1-Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 3 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 9 Temperature Dependence of Carrier Concentrations L7 and L8: how to get electron.
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L04 24Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
Dr. Nasim Zafar Electronics 1 EEE 231 – BS Electrical Engineering Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EXAMPLE 4.1 OBJECTIVE Solution Comment
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE105 - Spring 2007 Microelectronic Devices and Circuits
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011 Professor Ronald L. Carter
Conduction processes in semiconductors. Two form of charge carrier transport (1) Drift (due to E-field) (2) Diffusion (due to density gradient) for two.
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
L4 January 271 Semiconductor Device Modeling and Characterization EE5342, Lecture 4-Spring 2005 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 4 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 2 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 03 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter

©rlc L06-31Jan20112 First Assignment to –In the body of the message include subscribe EE5342 This will subscribe you to the EE5342 list. Will receive all EE5342 messages If you have any questions, send to with EE5342 in subject line.

©rlc L06-31Jan20113 Second Assignment Submit a signed copy of the document that is posted at

©rlc L06-31Jan20114 Drift Current The drift current density (amp/cm 2 ) is given by the point form of Ohm Law J = (nq  n +pq  p )(E x i+ E y j+ E z k), so J = (  n +  p )E =  E, where  = nq  n +pq  p defines the conductivity The net current is

©rlc L06-31Jan20115 Drift current resistance Given: a semiconductor resistor with length, l, and cross-section, A. What is the resistance? As stated previously, the conductivity,  = nq  n + pq  p So the resistivity,  = 1/  = 1/(nq  n + pq  p )

©rlc L06-31Jan20116 Drift current resistance (cont.) Consequently, since R =  l/A R = (nq  n + pq  p ) -1 (l/A) For n >> p, (an n-type extrinsic s/c) R = l/(nq  n A) For p >> n, (a p-type extrinsic s/c) R = l/(pq  p A)

©rlc L06-31Jan20117 Drift current resistance (cont.) Note: for an extrinsic semiconductor and multiple scattering mechanisms, since R = l/(nq  n A) or l/(pq  p A), and (  n or p total ) -1 =   i -1, then R total =  R i (series Rs) The individual scattering mechanisms are: Lattice, ionized impurity, etc.

©rlc L06-31Jan20118 Exp. mobility model function for Si 1 ParameterAsPB  min  max N ref 9.68e169.20e162.23e17 

©rlc L06-31Jan20119 Exp. mobility model for P, As and B in Si

©rlc L06-31Jan Carrier mobility functions (cont.) The parameter  max models 1/  lattice the thermal collision rate The parameters  min, N ref and  model 1/  impur the impurity collision rate The function is approximately of the ideal theoretical form: 1/  total = 1/  thermal + 1/  impurity

©rlc L06-31Jan Carrier mobility functions (ex.) Let N d = 1.78E17/cm3 of phosphorous, so  min = 68.5,  max = 1414, N ref = 9.20e16 and  = Thus  n = 586 cm2/V-s Let N a = 5.62E17/cm3 of boron, so  min = 44.9,  max = 470.5, N ref = 9.68e16 and  = Thus  n = 189 cm2/V-s

©rlc L06-31Jan Lattice mobility The  lattice is the lattice scattering mobility due to thermal vibrations Simple theory gives  lattice ~ T -3/2 Experimentally  n,lattice ~ T -n where n = 2.42 for electrons and 2.2 for holes Consequently, the model equation is  lattice (T) =  lattice (300)(T/300) -n

©rlc L06-31Jan Ionized impurity mobility function The  impur is the scattering mobility due to ionized impurities Simple theory gives  impur ~ T 3/2 /N impur Consequently, the model equation is  impur (T) =  impur (300)(T/300) 3/2

©rlc L06-31Jan Mobility Summary The concept of mobility introduced as a response function to the electric field in establishing a drift current Resistivity and conductivity defined Model equation def for  (N d,N a,T) Resistivity models developed for extrinsic and compensated materials

©rlc L06-31Jan Net silicon (ex- trinsic) resistivity Since  =  -1 = (nq  n + pq  p ) -1 The net conductivity can be obtained by using the model equation for the mobilities as functions of doping concentrations. The model function gives agreement with the measured  (N impur )

©rlc L06-31Jan Net silicon extr resistivity (cont.)

©rlc L06-31Jan Net silicon extr resistivity (cont.) Since  = (nq  n + pq  p ) -1, and  n >  p, (  = q  /m*) we have  p >  n Note that since 1.6(high conc.) <  p /  n < 3(low conc.), so 1.6(high conc.) <  n /  p < 3(low conc.)

©rlc L06-31Jan Net silicon (com- pensated) res. For an n-type (n >> p) compensated semiconductor,  = (nq  n ) -1 But now n = N = N d - N a, and the mobility must be considered to be determined by the total ionized impurity scattering N d + N a = N I Consequently, a good estimate is  = (nq  n ) -1 = [Nq  n (N I )] -1

©rlc L06-31Jan Equipartition theorem The thermodynamic energy per degree of freedom is kT/2 Consequently,

©rlc L06-31Jan Carrier velocity saturation 1 The mobility relationship v =  E is limited to “low” fields v < v th = (3kT/m*) 1/2 defines “low” v =  o E[1+(E/E c )  ] -1/ ,  o = v 1 /E c for Si parameter electrons holes v 1 (cm/s) 1.53E9 T E8 T E c (V/cm) 1.01 T T 1.68  2.57E-2 T T 0.17

©rlc L06-31Jan v drift [cm/s] vs. E [V/cm] (Sze 2, fig. 29a)

©rlc L06-31Jan References *Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, **Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago. M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.