1 [1] Central Institute for Meteorology and Geodynamics, Hohe Warte, Vienna [2] Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre,

Slides:



Advertisements
Similar presentations
Institut für Physik der Atmosphäre Precipitation observation networks Martin Hagen DLR Oberpfaffenhofen.
Advertisements

Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February.
Future Radar and Satellite Technology Daniel C. Miller National Weather Service Columbia, SC.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
Lightning Imager and its Level 2 products Jochen Grandell Remote Sensing and Products Division.
Terry Schuur Weather Radar Research Meteorological Observations in Support of Dual Polarization Research.
© CNMCA Cap. Davide MELFI Italian Air Force Meteorological Service CNMCA An Italian tool for convection: NEFODINA Session 4 of Convection Week 2011, 6-9.
To perform statistical analyses of observations from dropsondes, microphysical imaging probes, and coordinated NOAA P-3 and NASA ER-2 Doppler radars To.
Météorage Lightning data for flood monitoring Marc Bonnet V.P. International October, 2011 Météorage Lightning data for flood monitoring Marc Bonnet V.P.
Inter-comparison of Lightning Trends from Ground-based Networks during Severe Weather: Applications toward GLM Lawrence D. Carey 1*, Chris J. Schultz 1,
Thunderstorms One of Natures Most Exotic Events Unlike ordinary rain storms, thunderstorms have a delicate balance of airborne water vapor that is whipped.
Synthetic satellite images based on COSMO Caroline Forster, Tobias Zinner with contributions from Christian Keil, Luca Bugliaro, Françoise Faure.
Predicting lightning density in Mediterranean storms based on the WRF model dynamic and microphysical fields Yoav Yair 1, Barry Lynn 1, Colin Price 2,
CONVECTION IN TROPICAL CYCLONES John Molinari and David Vollaro University at Albany, SUNY Northeast Tropical Conference Rensselaerville, NY June 2009.
Institut für Physik der Atmosphäre Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen.
RECENT PROGRESS IN CONVECTIVE PHENOMENA MONITORING AND FORECASTING AT THE INM F. Martín, F. Elizaga, I. San Ambrosio and J. M. Fernández Servicio de Técnicas.
Warm Season Thunderstorm Patterns Over the New Jersey Area Al Cope Paul Croft National Weather Service Kean University Mount Holly, NJ Union, NJ.
Lightning The LDAR II Network Nicholas W. S. Demetriades, Ronald L. Holle and Martin J. Murphy Vaisala, Inc., Tucson, Arizona HEAT Project - First Planning.
Characteristics of Isolated Convective Storms Meteorology 515/815 Spring 2006 Christopher Meherin.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Operational thunderstorm nowcasting in the Alpine region.
On the relationship of in-cloud convective turbulence and total lightning Wiebke Deierling, John Williams, Sarah Al-Momar, Bob Sharman, Matthias Steiner.
Folie 1 Mature Convection: DLR activities presented by Caroline Forster DLR - Institute of Atmospheric Physics, Oberpfaffenhofen, Germany Convection Working.
Anticipating Cloud-to-Ground (CG) Lightning Utilizing Reflectivity Data from the WSR-88D. Pete Wolf, SOO National Weather Service Jacksonville, Florida.
Thunderstorms. Review of last lecture 1.Two types of lightning (cloud-to-cloud 80%, cloud-to- ground 20%) 2.4 steps of lightning development. 3.How fast.
The Lightning Warning Product Fifth Meeting of the Science Advisory Committee November, 2009 Dennis Buechler Geoffrey Stano Richard Blakeslee transitioning.
Overshooting Convective Cloud Top Detection A GOES-R Future Capability Product GOES-East (-8/-12/-13) OT Detections at Full Spatial and Temporal.
Nowcasting thunderstorms in complex cases using radar data Alessandro Hering* Stéphane Sénési # Paolo Ambrosetti* Isabelle Bernard-Bouissières # *MeteoSwiss.
GOES-R Risk Reduction New Initiative: Storm Severity Index Wayne M. MacKenzie John R. Mecikalski John R. Walker University of Alabama in Huntsville.
IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL Allen Zhao 1, John Cook 1, Qin Xu 2, and.
Thunderstorms and Tornadoes Last Lecture: We looked at severe weather events in the lower latitudes Principal weather event is the formation and movement.
Christopher J. Schultz 1, Walter A. Petersen 2, Lawrence D. Carey 3* 1 - Department of Atmospheric Science, UAHuntsville, Huntsville, AL 2 – NASA Marshall.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
The new DWD polarimetric weather radar network: a new radar data processing framework and new products Michael Frech 1, Nils Rathmann 2, Jörg Steinert.
Weather Predicting Weather forecasting is a prediction of what the weather will be like in an hour, tomorrow, or next week. Weather forecasting involves.
Relationships between Lightning and Radar Parameters in the Mid-Atlantic Region Scott D. Rudlosky Cooperative Institute of Climate and Satellites University.
Reflectivity and Radial Velocity
Determining Relationships between Lightning and Radar in Severe and Non-Severe Storms Scott D. Rudlosky Florida State University Department of Earth, Ocean,
On the Role of Electric Field Changes when Calculating Thunderstorm Currents Yu.V. Shlugaev, V.V. Klimenko, E.A. Mareev Institute of Applied Physics RAS,
Characteristics of Dual-Polarimetric Radar Variables during Lightning Cessation: A case Study for 11 April 2008 Thunderstorm Xuanli Li, John Mecikalski,
Titelfoto auf dem Titelmaster einfügen Deutscher Wetterdienst Dr. Paul James, German Weather Service, ECAM/EMS Conference, Reading, 9. Sept NowCastMIX.
The Rapid Developing Thunderstorm (RDT) product CDOP to CDOP2
Reading, 13 June 2013 Workshop on Convection in the high resolution Met Office models.
Field Mill. Charging by induction Initially neutral Introduce a charge, creating an electric field E.
Cb-LIKE: thunderstorm forecasts up to 6 hrs with fuzzy logic
Lightning Jump Evaluation RITT Presentation Tom Filiaggi (NWS – MDL) 11/28/12 Evaluation of “2σ” as Predictor for Severe Weather.
NOAA-MDL Seminar 7 May 2008 Bob Rabin NOAA/National Severe Storms Lab Norman. OK CIMSS University of Wisconsin-Madison Challenges in Remote Sensing to.
Response of active and passive microwave sensors to precipitation at mid- and high altitudes Ralf Bennartz University of Wisconsin Atmospheric and Oceanic.
Early Evaluation and Operational Applications of Total Lightning in AWIPS-2 Al Cope NOAA/National Weather Service Forecast Office Mount Holly, NJ
HRV (70-100%)IR10.8 (Tb 35dBz HRV cloud (HRV,HRV,IR10.8) radar Zmax > 35dBz (CC+CG) 10-minute lightning data (CC+CG) Simultaneous.
Purpose To deepen your knowledge to use satellite images for practical nowcasting during situations of summer convection  Model monitoring  Interpretation.
TOULOUSE (FRANCE), 5-9 September 2005 OBJECTIVE VERIFICATION OF A RADAR-BASED OPERATIONAL TOOL FOR IDENTIFICATION OF HAILSTORMS I. San Ambrosio, F. Elizaga.
Paper WSN05 Toulouse 5-9 September, 2005 VERIFICATION OF OPERATIONAL THUNDERSTORM NOWCASTS E. Ebert, T. Keenan, J. Bally and S. Dance Bureau of.
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre Case Study: 1 st July 2010, 12:00 UTC.
Lightning Mapping Technology & NWS Warning Decision Making Don MacGorman, NOAA/NSSL.
AQUARadar Identification of temporally stable Z-R relationships using measurements of micro-rain radars M. Clemens (1), G. Peters (1), J. Seltmann (2),
Investigating Lightning Cessation at KSC Holly A. Melvin Henry E. Fuelberg Florida State University GOES-R GLM Workshop September 2009.
Total Lightning Characteristics in Mesoscale Convective Systems Don MacGorman NOAA/NSSL & Jeff Makowski OU School of Meteorology.
© 2000 Roger Edwards Investigating the Potential of Using Radar to Nowcast Cloud-to-Ground Lightning Initiation over Southern Ontario 18 th Annual GLOMW.
Operational Use of Lightning Mapping Array Data Fifth Meeting of the Science Advisory Committee November, 2009 Geoffrey Stano, Dennis Buechler, and.
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
Precipitation Classification and Analysis from AMSU
Paper Review Jennie Bukowski ATS APR-2017
Pamela Eck, Brian Tang, and Lance Bosart University at Albany, SUNY
Severe Storm in Mecca, Saudi Arabia
How well can we determine the tropopause
Nic Wilson’s M.S.P.M. Research
Aiding Severe Weather Forecasting
Rita Roberts and Jim Wilson National Center for Atmospheric Research
Using WSR-88D Reflectivity for the Prediction of Cloud-to-ground Lightning: A Central North Carolina Study A collaborative research project between NCSU.
Presentation transcript:

1 [1] Central Institute for Meteorology and Geodynamics, Hohe Warte, Vienna [2] Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Deutschland [3] Physics Department, University of Munich, Germany Vera Meyer [1] - H. Höller [2], H.-D. Betz [3], K. Schmidt [2] Convection Week 2011, Session 3 Thunderstorm Tracking and Nowcasting using 3D Lightning and Radar Data in Southern Germany

2 PROJECT RegioExAKTwww.regioexakt.de Regional Risk of Convective Extreme Weather Events: User-oriented concepts for optimised thunderstorm nowcasting, with focus on the needs of Munich Airport Coordinator: Dr. Nikolai Dotzek MUNICH AIRPORT HEAVY RAIN 15 Juni ,5 l/m² zw –21.00 h HAIL DAMAGE Boeing 737, Geneva 15 August 2003 intense rain hail lightning strikes wind gusts etc. MOTIVATION

3 LINET - Lightning Detection Network -‘total lightning’ detection app. 100 sensors in Central Europe -magnetic field measurements -TOA (time of arrival) method -event-height parameter comprehensive discrimination of ‘cloud’ and ‘cloud-to-ground’ lightning MOTIVATION

4 Abbreviations IC (cloud lightning) in-cloud, inter-cloud, intra-cloud, cloud-to-air CG (cloud-to-ground) cloud – to – ground TL (total lightning) sum (IC + CG) 0 °C -15 °C CG IC LIGHTNING TYPES MOTIVATION

5 high-precision lightning detection. ‚NORMAL STORM‘ cloud lightning cloud-to- ground lightning MOTIVATION LINET 3D-Visualisierung ‚SEVERE STORM‘

6 THUNDERSTORM TRACKING and NOWCASTING temporal evolution of LIGHTNING cell parameters cell track MUNICH AIRPORT lightning-cell 14:45 15:00 15:1515:30 total lightning cloud lightning cloud-to-ground lightning time MOTIVATION

7 cell track MUNICH AIRPORT lightning-cell cell nowcasts THUNDERSTORM TRACKING and NOWCASTING 14:45 15:00 15:1515:30 total lightning cloud lightning cloud-to-ground lightning time nowprognosis temporal evolution of LIGHTNING cell parameters MOTIVATION

8 GOAL: to assess the usability of 3D total-lightning data for thunderstorm nowcasting separately and in combination with other data sources (radar) INTRODUCTION

9 GOAL: to assess the usability of 3D total-lightning data for thunderstorm nowcasting separately and in combination with other data sources (radar) INTRODUCTION identification tracking prediction

10 GOAL: to assess the usability of 3D total-lightning data for thunderstorm nowcasting separately and in combination with other data sources (radar) INTRODUCTION identification tracking prediction cell evolution

11 GOAL: to assess the usability of 3D total-lightning data for thunderstorm nowcasting separately and in combination with other data sources (radar) - develop a nowcasting method based on lightning information - develop a method to compare lightning-cell information with information from other data sources (radar) verify lightning-cell properties in case-studies evaluate the statistical information content of 3D lightning information INTRODUCTION

12 INTRODUCTION May – September 2008 RESEARCH DOMAIN and OBSERVATION PERIOD

13 METHOD ec-TRAM – tracking and monitoring of electrically charged convective cells combines cell informations from independently tracked lightning- and radar-cells NOWCASTING APPROACH ec-TRAM

14 3 DWD Radar Site Fürholzen (Munich) 2D reflecitvity maps, low level scan domain [200 km x 200 km] resolution [1 km x 1 km], [5 min] LINET lightning data, nowcast GmbH 3D TOA method in VLF/LF regime, IC/CG discrimination 2D discharge event maps cell clustering:time interval3 min minimum distance6 km ec-TRAM – tracking and monitoring of electrically charged convective cells NOWCASTING APPROACH ec-TRAM 3 METHOD

15 NOWCASTING APPROACH ec-TRAM combines the cell informations of lightning cells and radar cells cell assignment via spatial overlap cell identification parameter (optimized) lightning cell:threshold of 1 event lightning data:amplitude |A| > 2.5 kA radar cell: threshold of 33 dBZ radar-cells lightning-cell 4 METHOD Rad-TRAM [Kober,2009] li-TRAM [Meyer,2010]

16 NOWCASTING APPROACH ec-TRAM cell assignment via spatial overlap cell identification parameter lightning cell:threshold of 1 event radar cell: threshold of 33 dBZ radar-cells lightning-cell ec-cells combines the cell informations of lightning cells and radar cells 4 METHOD ec-TRAM [Meyer,2010] Rad-TRAM [Kober,2009] li-TRAM [Meyer,2010]

17 example: ec-TRAM nowcasting map (detail) with cell contours, tracks and prognoses of an electrically charged ‚ec-cell‘. radar cell: Reflectivity map (blue shaded) cell track (white line), actual cell contour (white polygons), cell prognoses for 10 minutes (dark grey polygons), and 20 minutes (light grey polygons) lightning cell: discharge events clustered for 3 minutes (green crosses) actual cell (red polygon) cell track ec-cells NOWCASTING APPROACH ec-TRAM 5 METHOD

18 radar sites x Fürholzen xPOLDIRAD MUC Munich Airport M Munich RRegensburg AAugsburg P F 25 June 2008 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER South Germany Austria CASE STUDY

19

20 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER 25 June 2008 Example rad-TRAM: temporal evolution of selected parameters radar-cell: - cell area[km²] CASE STUDY

21 25 June 2008 CASE STUDY TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER Example li-TRAM: temporal evolution of selected parameters lightning-cell: - cell area[km²] - TL [cnt/cell] - CG [cnt/cell] - IC [cnt/cell]

22 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER Example ec-TRAM: temporal evolution of selected parameters radar-cell: - cell area[km²] lightning-cell: - cell area[km²] - TL [cnt/cell] - CG [cnt/cell] - IC [cnt/cell] area [km²], discharge frequency [cnt/cell] 25 June 2008 CASE STUDY

23 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER area [km²], discharge frequency [cnt/cell] onset Example ec-TRAM: temporal evolution of selected parameters radar-cell: - cell area[km²] lightning-cell: - cell area[km²] - TL [cnt/cell] - CG [cnt/cell] - IC [cnt/cell] CASE STUDY

24 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER area [km²], discharge frequency [cnt/cell] cell splitting Example ec-TRAM: temporal evolution of selected parameters radar-cell: - cell area[km²] lightning-cell: - cell area[km²] - TL [cnt/cell] - CG [cnt/cell] - IC [cnt/cell] CASE STUDY

25 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER area [km²], discharge frequency [cnt/cell] intensification Example ec-TRAM: temporal evolution of selected parameters radar-cell: - cell area[km²] lightning-cell: - cell area[km²] - TL [cnt/cell] - CG [cnt/cell] - IC [cnt/cell] CASE STUDY

26 TEMPORAL EVOLUTION of ec-TRAM CELL PARAMETER area [km²], discharge frequency [cnt/cell] decease Example ec-TRAM: temporal evolution of selected parameters radar-cell: - cell area[km²] lightning-cell: - cell area[km²] - TL [cnt/cell] - CG [cnt/cell] - IC [cnt/cell] CASE STUDY

27 VERIFICATION of LIGHTNING-CELL PROPERTIES in CASE-STUDIES lifetime series of ec-cell parameters were complemented with 3D polarimetric radar data (POLDIRAD) - not shown lightning-cell parameters were found to - evolve reasonably according to the current state of knowledge - be in very good agreement with other case studies [Klemp1987, Williams 1989 and 1999, Goodman 1988, Carey 1996, Lopez 1997, Mazur 1998, Altaraz 2003, Motley 2006,...]  reflect the actual storm dynamic (intensification / weakening)  li-TRAM has reasonable, consistent tracking performances (comparable to rad-TRAM) [Meyer, 2010] VERIFICATION

28 Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS 2 CASE STUDIES

29 Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] I 2 3 cell growth PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS 2 CASE STUDIES

30 Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] mature stage PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS

31 Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] E cell dissipation PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS 2 CASE STUDIES

32 Lifetime = 145 min 25 May 2008 lightning-cell No 6 cell area [km²] lightning frequency per cell [cnt/cell] PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] 2 CASE STUDIES

33 Lifetime = 145 min 25 May 2008 lightning-cell No 6 cell area [km²] lightning frequency per cell [cnt/cell] I cell growth PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] 2 CASE STUDIES

34 Lifetime = 145 min 25 May 2008 lightning-cell No 6 cell area [km²] lightning frequency per cell [cnt/cell] mature stage PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] 2 CASE STUDIES

35 Lifetime = 145 min 25 May 2008 lightning-cell No 6 cell area [km²] lightning frequency per cell [cnt/cell] -2 E cell dissipation -3 PARAMETER CORRELATIONS of 2 LIGHTNING-CELL TRACKS Lifetime = 40 min 30 May 2008 lightning-cell No 137 cell area [km²] lightning frequency per cell [cnt/cell] 2 CASE STUDIES

36 cell area [km²] lightning frequency per cell [cnt/cell] TL fit TL mean IC mean PARAMETER MEANS lightning frequency versus cell area -10 km² area intervals completely assessed lightning-cell entries TL fit TL MEAN IC MEAN CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS LIGHTNING-STATISTICS

37 cell area [km²] lightning frequency per cell [cnt/cell] TL fit TL mean IC mean TL fit TL MEAN IC MEAN 160 km² CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS LIGHTNING-STATISTICS

38 cell area [km²] IC mean discharge height per cell [km] cell area [km²] lightning frequency per cell [cnt/cell] TL fit TL MEAN IC MEAN fit IC MEAN height CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS 160 km² LIGHTNING-STATISTICS

39 cell area [km²] IC mean discharge height per cell [km] cell area [km²] lightning frequency per cell [cnt/cell] 160 km² fit IC mean height 160 km² TL fit TL MEAN IC MEAN fit IC MEAN height CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS NO ARTIFACT of the ALGRITHM LIGHTNING-STATISTICS

40 CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS cell area [km²] IC mean discharge height per cell [km] cell area [km²] lightning frequency per cell [cnt/cell] 160 km² TL fit TL mean IC mean fit IC mean height 160 km² NO INFORMATION about TEMPORAL CELL EVOLUTION TL fit TL MEAN IC MEAN fit IC MEAN height 9 LIGHTNING-STATISTICS

41 Lifetime = 40 min Lifetime = 145 min 30 May 2008 lightning-cell No May 2008 lightning-cell No 6 cell area [km²] lightning frequency per cell [cnt/cell] cell area [km²] lightning frequency per cell [cnt/cell] I E E I CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS 10 LIGHTNING-STATISTICS

42 Lifetime = 40 min Lifetime = 145 min 30 May 2008 lightning-cell No May 2008 lightning-cell No 6 cell area [km²] lightning frequency per cell [cnt/cell] cell area [km²] lightning frequency per cell [cnt/cell] I E E I CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS 10 LIGHTNING-STATISTICS

43 FREQUENCY DISTRIBUTION of LIFE-TIMES LIGHTNING-STATISTICS lightning-cell lifetime [min] frequency [-] long-lived cellsshort-lived cells

44 LIFETIME REGIMES LIGHTNING-STATISTICS short-lived[ 15 min – 75 min ] ‚SINGLE CELLS‘ - lowly organized - simply structured:1 updraft + 1 downdraft - simple life-cycles:growth – short maturity – decease long-lived [ ≥ 80 min ] ‚MULITCELLS‘, ‚SUPERCELLS‘ - highly organized - complexly structured - complex life-cycles: growth – elongated (fluctuating) maturity – decease

45 relative frequency cell area [km²] lightning frequency per cell [cnt/cell] total lightning short -lived long-lived cells RELATIVE AMOUNT to STATISTICAL MEAN CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS LIGHTNING-STATISTICS

46 cell area [km²] lightning frequency per cell [cnt/cell] total lightning cell type growth decease CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS short-lived cells short- lived DISCUSSION

47 cell area [km²] lightning frequency per cell [cnt/cell] total lightning cell type long-lived cells maturity CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS long-lived cells growth decease DISCUSSION

48 cell area [km²] Lightning frequency per cell [1/km²] TL fit TL mean IC mean SCATTER! total lightning cell area [km²] IC mean discharge height per cell [km] fit IC mean height SCATTER! CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS DISCUSSION

49 cell area [km²] lightning frequency per cell [cnt/cell] long-lived cell type long-lived cells short-lived INFORMATION about STORM TYPE (lifetime, intensity) and TEMPORAL EVOLUTION! CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS DISCUSSION

50 THUNDERSTORM TRACKING and NOWCASTING cell track MUNICH AIRPORT lightning-cell cell nowcasts 14:45 15:00 15:1515:30 total lightning cloud lightning cloud-to-ground lightning time nowprognosis temporal evolution of LIGHTNING cell parameters Ad MOTIVATION

51 cell area [km²] IC mean discharge height per cell [km] cell area [km²] lightning frequency per cell [cnt/cell] TL fit TL MEAN IC MEAN fit IC MEAN height 3D information from 2D cell tracking! CORRELATION STATISTICS of LIGHTNING-CELL PARAMETERS DISCUSSION

52 GOAL: to assess the usability of 3D total-lightning data for thunderstorm nowcasting separately and in combination with other data sources (radar) CONCLUSION 11 CONCLUSION and OUTLOOK 3D lightning information with in-cloud and cloud-to-ground lightning discrimination provides useful information about the storm dynamic and developement and have the capacity to nowcast cell trends from the cell history

53 - test the usability of (specified) normalized cell life-cycles to derive trend prognoses - use cell trends from cell history to add trend prognoses to local prognoses - test the quality of trend prognoses - investigate cell parameter correlations with other data sources (3D radar, satellite,... ) OUTLOOK 11 CONCLUSION and OUTLOOK

54 - parameterization of TL frequency with IC/CG ratio and mean IC height for modelling [Price and Rind 1992, Allen and Pickering 2002] - simulation of thunderstorm life-cycles with realistic discharge characteristics OTHER possible APPLICATIONS CONCLUSION and OUTLOOK ?160 km²?

55 cell area [km²] IC mean discharge height per cell [km] cell area [km²] lightning frequency per cell [cnt/cell] 160 km² TL fit TL mean IC mean fit IC mean height 160 km² THANK YOU

56 Literature K. Kober and A. Tafferner. Tracking and nowcasting of convective cells unsing remote sensing data from radar and satellite. Meteorologiesche Zeitschrift, 10(1):75-84, 2009 V. Meyer, H. Höller, K.Schmidt, and H.-D. Betz. Temporal evolution of total lightning and radar parameters of thunderstorms in southern Germany and its benefit for nowcasting. Proceedings: 5th European Conference on Severe Storms, 2009 V. Meyer (2010): Thunderstorm Tracking and Monitorin on the Basis of Three Dimenional Lightning Data and Conventional and Polarimetric Radar Data. Dissertation, LMU München: Faculty of Physics

57 POLARIMTRIC INFORMATION POLDIRAD RHI , hydrometeorclassifications, 16:42h, azimuth = 52 ° sounding munich: 0 ° at 3.5 km, Tropopause at 10 km

58 area [km²], discharge frequency [cnt/cell] 25 June 2008 example: radar-cell: -cell area[km²] lightning-cell: -cell area[km²] - TL[cnt/cell] - CG[cnt/cell] - IC[cnt/cell] polar. radar data - hydrometeors ZEITLICHE ENTWICKLUNG VON ec-ZELL PARAMETERN dBZ cell graupel/hail heavy rain light rain H = 4 km ground