Electromagnetic Radiation Principles

Slides:



Advertisements
Similar presentations
Introduction to Remote Sensing
Advertisements

The Atmosphere: Structure and Temperature
Electro-magnetic radiation
Introduction to Astrophysics Lecture 3: Light. Properties of light Light propagates as a wave, and corresponds to oscillations of electric and magnetic.
Wave Behavior Another McGourty-Rideout Production.
Electromagnetic Radiation
The Nature of Light Chapter Five.
Radiation Heat Transfer
Spectral Reflectance Curves
METO 621 Lesson 6. Absorption by gaseous species Particles in the atmosphere are absorbers of radiation. Absorption is inherently a quantum process. A.
Wave Model of Electromagnetic Energy An electromagnetic wave is composed of electric and magnetic vectors that are orthogonal to one another and travel.
Electromagnetic Radiation Electromagnetic Spectrum Radiation Laws Atmospheric Absorption Radiation Terminology.
Thermal Infrared Remote Sensing Radiant versus Kinetic temperature Blackbody radiation Atmospheric effect Principle of energy conservation Radiation from.
OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001 Review of EMR & Radiative Processes Electromagnetic Radiation - remote.
Spectral Reflectance Curves Lecture 5. When specular reflection occurs, the surface from which the radiation is reflected is essentially smooth (i.e.
1. 2 Definition 1 – Remote sensing is the acquiring of information about an object or scene without touching it through using electromagnetic energy a.
Energy Ability to do work Many different forms Conservation of energy (Law) Transformed: example: – Radiant to Thermal – Kinetic to Thermal (friction)
Heat Transfer Introduction
Waves and Light. A wave is a pattern that moves. A wave is a pattern that moves. As the pattern moves, the medium may “jiggle”, but on average it stays.
LIGHT A FORM OF ELECTROMAGNETIC RADIATION THAT STIMULATES THE EYE.
Electromagnetic radiation : Interaction with matter and atmosphere
MET 60: Chapter: 4 (W&H) and 2 (Stull) Radiative Transfer Dr. Craig Clements San José State University.
Energy interactions in the atmosphere
Fiber-Optic Communications James N. Downing. Chapter 2 Principles of Optics.
ATS Lecture 2 Energy & Radiation Surface Maps.
REFRACTION. When light travels from one material to another it usually changes direction The bending of light that occurs at the borderline of two materials.
Laws of Radiation Heat Transfer P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Macro Description of highly complex Wave.
Radiation: Processes and Properties -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3.
ElectroMagnetic Radiation (EMR) Lecture 3 August 9, 2006.
REFRACTION.
Radiometric and Geometric Correction
Objectives Explain how radiant energy reaches Earth.
Lecture 21 Nature of Light Reflection and Refraction
ElectroMagnetic Radiation (EMR) Lecture 2 September 1, 2004.
Radiation Fundamental Concepts EGR 4345 Heat Transfer.
Light Waves. What is Light? Light is the range of frequencies of the electromagnetic spectrum that stimulate the retina of the eye.
Electromagnetic Waves and Their Propagation Through the Atmosphere
Earth’s Energy Balance
CHAPTER 12 RADIATION HEAT TRANSFER. Electromagnetic Radiation – electromagnetic waves (brought upon by accelerated charges or changing electric currents)
Light Waves.
Introduction to Thermal Radiation
Electromagnetic Radiation: Interactions in the Atmosphere.
1 By Mike Maloney © 2003 Mike Maloney2 Light as a Ray Light very often travels in straight lines. We represent light using rays, which are straight lines.
Radiation Heat Transfer
Light is a Particle Physics 12.
NATS 101 Section 13: Lecture 5 Radiation. What causes your hand to feel warm when you place it near the pot? NOT conduction or convection. Why? Therefore,
Refraction. Have you ever seen this? Refraction of Light When light travels through a surface between two different media, the light will be refracted.
1 Teaching Innovation - Entrepreneurial - Global The Centre for Technology enabled Teaching & Learning D M I E T R, Wardha DTEL DTEL (Department for Technology.
Lecture 2: Heat and radiation in the atmosphere. TEMPERATURE… is a measure of the internal heat energy of a substance. The molecules that make up all.
17 Chapter 17 The Atmosphere: Structure and Temperature.
Planck’s law  Very early in the twentieth century, Max Karl Ernest Ludwig Planck put forth the idea of the quantum theory of radiation.  It basically.
Electromagnetic Radiation Principles and Radiometric Correction
Remote sensing: the collection of information about an object without being in direct physical contact with the object. the collection of information about.
Damian Luna Yetziel Sandoval – Alberto Gonzales – 80546
The Atmosphere: Structure & Temperature. Atmosphere Characteristics Weather is constantly changing, and it refers to the state of the atmosphere at any.
Heat Transfer RADIATION HEAT TRANSFER FUNDAMENTALS.
Physical Principles of Remote Sensing: Electromagnetic Radiation
Electromagnetic Radiation Principles
Week Four Principles of EMR and how EMR is used to perform RS
Basic Science in Remote Sensing
Energy Flow Concept Image Sensor Energy Source

REMOTE SENSING Fundamentals of Remote Sensing
Radiation in the Atmosphere
Introduction and Basic Concepts
Introduction and Basic Concepts
REMOTE SENSING.
Solar Energy to Earth Current News and Weather Finish Maps and GIS
RADIATION LAWS.
Presentation transcript:

Electromagnetic Radiation Principles Remote sensing systems do not function perfectly. Also, the Earth’s atmosphere, land, and water are complex and do not lend themselves well to being recorded by remote sensing devices that have constraints such as spatial, spectral, temporal, and radiometric resolution. Consequently, error creeps into the data acquisition process and can degrade the quality of the remote sensor data collected. The two most common types of error encountered in remotely sensed data are radiometric and geometric. Radiometric correction attempts to improve the accuracy of spectral reflectance, emittance, or back-scattered measurements obtained using a remote sensing system. Geometric correction is concerned with placing the reflected, emitted, or back- scattered measurements or derivative products in their proper planimetric (map) location so they can be associated with other spatial information in a geographic information system (GIS) or spatial decision support system (SDSS).

Electromagnetic Radiation Principles Radiometric and geometric correction of remotely sensed data are normally referred to as preprocessing operations because they are performed prior to information extraction. Image preprocessing hopefully produces a corrected image that is as close as possible, both radiometrically and geometrically, to the true radiant energy and spatial characteristics of the study area at the time of data collection. Internal and external errors must be identified to correct the remotely sensed data:

Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions that should be understood to properly preprocess and interpret remotely sensed data. For example, if the energy being remotely sensed comes from the Sun, the energy: is radiated by atomic particles at the source (the Sun), travels through the vacuum of space at the speed of light, interacts with the Earth’s atmosphere, interacts with the Earth’s surface, interacts with the Earth’s atmosphere once again, and finally reaches the remote sensor, where it interacts with various optics, filters, film emulsions, or detectors.

Wave Model of Electromagnetic Radiation In the 1860s, James Clerk Maxwell (1831–1879) conceptualized electromagnetic radiation (EMR) as an electromagnetic wave that travels through space at the speed of light, c, which is 3 x 108 meters per second (hereafter referred to as m s-1) or 186,282.03 miles s-1. A useful relation for quick calculations is that light travels about 1 ft per nanosecond (10-9 s). The electromagnetic wave consists of two fluctuating fields—one electric and the other magnetic. The two vectors are at right angles (orthogonal) to one another, and both are perpendicular to the direction of travel.

Sources of Electromagnetic Energy Thermonuclear fusion taking place on the surface of the Sun yields a continuous spectrum of electromagnetic energy. The 5770 – 6000 kelvin (K) temperature of this process produces a large amount of relatively short wavelength energy that travels through the vacuum of space at the speed of light. Some of this energy is intercepted by the Earth, where it interacts with the atmosphere and surface materials. The Earth reflects some of the energy directly back out to space or it may absorb the short wavelength energy and then re-emit it at a longer wavelength.

Solar and Heliospheric Observatory (SOHO) Image of the Sun Obtained on September 14, 1999

Blackbody Radiation Curves Blackbody radiation curves for several objects including the Sun and the Earth which approximate 6,000 K and 300 K blackbodies, respectively. The area under each curve may be summed to compute the total radiant energy (Ml) exiting each object. Thus, the Sun produces more radiant exitance than the Earth because its temperature is greater. As the temperature of an object increases, its dominant wavelength (lmax ) shifts toward the shorter wavelengths of the spectrum.

Wien’s Displacement Law In addition to computing the total amount of energy exiting a theoretical blackbody such as the Sun, we can determine its dominant wavelength (lmax) based on Wien’s displacement law: where k is a constant equaling 2898 mm K, and T is the absolute temperature in kelvin. Therefore, as the Sun approximates a 6000 K blackbody, its dominant wavelength (lmax ) is 0.48 mm:

Radiant Intensity of the Sun The Sun approximates a 6000 K blackbody with a dominant wavelength of 0.48 m (green light). Earth approximates a 300 K blackbody with a dominant wavelength of 9.66 m. The 6000 K Sun produces 41% of its energy in the visible region from 0.4 - 0.7 m (blue, green, and red light). The other 59% of the energy is in wavelengths shorter than blue light (<0.4 m) and longer than red light (>0.7 m). Eyes are only sensitive to light from the 0.4 to 0.7 m. Remote sensor detectors can be made sensitive to energy in the non-visible regions of the spectrum.

Radiometric Quantities All objects above absolute zero (–273°C or 0 K) emit electromagnetic energy, including water, soil, rock, vegetation, and the surface of the Sun. The Sun represents the initial source of most of the electromagnetic energy recorded by remote sensing systems (except RADAR, LIDAR, and SONAR). We may think of the Sun as a 5770 – 6000 K blackbody (a theoretical construct that absorbs and radiates energy at the maximum possible rate per unit area at each wavelength (l) for a given temperature). The total emitted radiation from a blackbody (Ml) measured in watts per m2 is proportional to the fourth power of its absolute temperature (T) measured in kelvin (K). This is known as the Stefan-Boltzmann law and is expressed as: where σ is the Stefan-Boltzmann constant, 5.66697 x 10-8 W m-2 K-4.

Quantum Theory of EMR Niels Bohr (1885–1962) and Max Planck recognized the discrete nature of exchanges of radiant energy and proposed the quantum theory of electromagnetic radiation. This theory states that energy is transferred in discrete packets called quanta or photons. The relationship between the frequency of radiation expressed by wave theory and the quantum is: where Q is the energy of a quantum measured in joules, h is the Planck constant (6.626    10-34 J s), and n is the frequency of the radiation.

Atmospheric Refraction Refraction in three nonturbulent atmospheric layers. The incident energy is bent from its normal trajectory as it travels from one atmospheric layer to another. Snell’s law can be used to predict how much bending will take place, based on a knowledge of the angle of incidence (q) and the index of refraction of each atmospheric level, n1, n2, n3.

Index of Refraction The index of refraction (n) is a measure of the optical density of a substance. This index is the ratio of the speed of light in a vacuum, c, to the speed of light in a substance such as the atmosphere or water, cn: The speed of light in a substance can never reach the speed of light in a vacuum. Therefore, its index of refraction must always be >1. For example, the index of refraction for the atmosphere is 1.0002926 and 1.33 for water. Light travels more slowly through water because of water’s higher density.

Snell’s Law Refraction can be described by Snell’s law, which states that for a given frequency of light (we must use frequency since, unlike wavelength, it does not change when the speed of light changes), the product of the index of refraction and the sine of the angle between the ray and a line normal to the interface is constant: From the accompanying figure, we can see that a nonturbulent atmosphere can be thought of as a series of layers of gases, each with a slightly different density. Anytime energy is propagated through the atmosphere for any appreciable distance at any angle other than vertical, refraction occurs.

Snell’s Law The amount of refraction is a function of the angle made with the vertical (q), the distance involved (in the atmosphere the greater the distance, the more changes in density), and the density of the air involved (air is usually more dense near sea level). Serious errors in location due to refraction can occur in images formed from energy detected at high altitudes or at acute angles. However, these location errors are predictable by Snell’s law and thus can be removed. Notice that Therefore, if one knows the index of refraction of medium n1 and n2 and the angle of incidence of the energy to medium n1, it is possible to predict the amount of refraction that will take place (sin q2) in medium n2 using trigonometric relationships. It is useful to note, however, that most image analysts never concern themselves with computing the index of refraction.

Atmospheric Layers and Constituents Major subdivisions of the atmosphere and the types of molecules and aerosols found in each layer.

Rayleigh Scattering The intensity of Rayleigh scattering varies inversely with the fourth power of the wavelength (-4).

Rayleigh Scattering The approximate amount of Rayleigh scattering in the atmosphere in optical wavelengths (0.4 – 0.7 mm) may be computed using the Rayleigh scattering cross-section (tm) algorithm: where n = refractive index, N = number of air molecules per unit volume, and l = wavelength. The amount of scattering is inversely related to the fourth power of the radiation’s wavelength.

Atmospheric Scattering Type of scattering is a function of: the wavelength of the incident radiant energy, and the size of the gas molecule, dust particle, and/or water vapor droplet encountered.

Atmospheric Absorption Absorption of the Sun's Incident Electromagnetic Energy in the Region from 0.1 to 30 mm by Various Atmospheric Gases window Atmospheric Absorption

a) The absorption of the Sun’s incident electromagnetic energy in the region from 0.1 to 30 mm by various atmospheric gases. The first four graphs depict the absorption characteristics of N2O, O2 and O3, CO2, and H2O, while the final graphic depicts the cumulative result of all these constituents being in the atmosphere at one time. The atmosphere essentially “closes down” in certain portions of the spectrum while “atmospheric windows” exist in other regions that transmit incident energy effectively to the ground. It is within these windows that remote sensing systems must function. b) The combined effects of atmospheric absorption, scattering, and reflectance reduce the amount of solar irradiance reaching the Earth’s surface at sea level. Nitrous oxide

Reflectance

Typical spectral reflectance curves for urban–suburban phenomena in the region 0.4 – 0.9 mm.

Terrain Energy-Matter Interactions The time rate of flow of energy onto, off of, or through a surface is called radiant flux (F) and is measured in watts (W). The characteristics of the radiant flux and what happens to it as it interacts with the Earth’s surface is of critical importance in remote sensing. In fact, this is the fundamental focus of much remote sensing research. By carefully monitoring the exact nature of the incoming (incident) radiant flux in selective wavelengths and how it interacts with the terrain, it is possible to learn important information about the terrain.

Terrain Energy-Matter Interactions Radiometric quantities have been identified that allow analysts to keep a careful record of the incident and exiting radiant flux. We begin with the simple radiation budget equation, which states that the total amount of radiant flux in specific wavelengths (l) incident to the terrain ( ) must be accounted for by evaluating the amount of radiant flux reflected from the surface ( ), the amount of radiant flux absorbed by the surface ( ), and the amount of radiant flux transmitted through the surface ( ):

Hemispherical Reflectance, Absorptance, and Transmittance The Hemispherical reflectance (rl) is defined as the dimensionless ratio of the radiant flux reflected from a surface to the radiant flux incident to it: Hemispherical transmittance (tl) is defined as the dimensionless ratio of the radiant flux transmitted through a surface to the radiant flux incident to it: Hemispherical absorptance (al) is defined by the dimensionless relationship:

Hemispherical Reflectance, Absorptance, and Transmittance These radiometric quantities are useful for producing general statements about the spectral reflectance, absorptance, and transmittance characteristics of terrain features. In fact, if we take the simple hemispherical reflectance equation and multiply it by 100, we obtain an expression for percent reflectance ( ): This quantity is used in remote sensing research to describe the general spectral reflectance characteristics of various phenomena.

Radiant Flux Density The concept of radiant flux density for an area on the surface of the Earth. Irradiance is a measure of the amount of radiant flux incident upon a surface per unit area of the surface measured in watts m-2. Exitance is a measure of the amount of radiant flux leaving a surface per unit area of the surface measured in watts m-2.

Irradiance and Exitance The amount of radiant flux incident upon a surface per unit area of that surface is called Irradiance (E), where: • The amount of radiant flux leaving per unit area of the plane surface is called Exitance (M). • Both quantities are measured in watts per meter squared (W m-2).

Radiance Radiance (L) is the radiant flux per unit solid angle leaving an extended source in a given direction per unit projected source area in that direction and is measured in watts per meter squared per steradian (W m-2 sr -1 ). We are only interested in the radiant flux in certain wavelengths (F) leaving the projected source area (A) within a certain direction () and solid angle ():

The concept of radiance leaving a specific projected source area on the ground, in a specific direction, and within a specific solid angle.